What Happens to a Manifold Under a Bi-Lipschitz Map?

被引:4
|
作者
Eftekhari, Armin [1 ]
Wakin, Michael B. [2 ]
机构
[1] Univ Texas Austin, ICES, 201 East 24th St,POB 3-420, Austin, TX 78712 USA
[2] Colorado Sch Mines, Dept Elect Engn & Comp Sci, 1500 Illinois St, Golden, CO 80401 USA
关键词
Manifolds; Reach; Bi-Lipschitz maps; Compressive sensing; Random projections; EMBEDDINGS;
D O I
10.1007/s00454-016-9847-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study geometric and topological properties of the image of a smooth submanifold of under a bi-Lipschitz map to . In particular, we characterize how the dimension, diameter, volume, and reach of the embedded manifold relate to the original. Our main result establishes a lower bound on the reach of the embedded manifold in the case where and the bi-Lipschitz map is linear. We discuss implications of this work in signal processing and machine learning, where bi-Lipschitz maps on low-dimensional manifolds have been constructed using randomized linear operators.
引用
收藏
页码:641 / 673
页数:33
相关论文
共 50 条
  • [41] Bi-Lipschitz pieces between manifolds
    David, Guy C.
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (01) : 175 - 218
  • [42] Invariants for bi-Lipschitz equivalence of ideals
    Bivia-Ausina, Carles
    Fukui, Toshizumi
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (03): : 791 - 815
  • [43] SYMMETRIZATION AND EXTENSION OF PLANAR BI-LIPSCHITZ MAPS
    Kovalev, Leonid V.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 541 - 556
  • [44] Sharp Lipschitz constant of bi-Lipschitz automorphism on Cantor set
    XIONG Ying WANG LiSha XI LiFeng Department of Mathematics South China University of Technology Guangzhou China Department of Mathematics Hubei University Wuhan China Institute of Mathematics Zhejiang Wanli University Ningbo China
    ScienceinChina(SeriesA:Mathematics), 2009, 52 (04) : 709 - 719
  • [45] Sharp Lipschitz constant of bi-Lipschitz automorphism on Cantor set
    Ying Xiong
    LiSha Wang
    LiFeng Xi
    Science in China Series A: Mathematics, 2009, 52 : 709 - 719
  • [46] Sobolev mappings: Lipschitz density is not a bi-Lipschitz invariant of the target
    Hajlasz, Piotr
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (02) : 435 - 467
  • [47] THE DIRECTIONAL DIMENSION OF SUBANALYTIC SETS IS INVARIANT UNDER BI-LIPSCHITZ HOMEOMORPHISMS
    Koike, Satoshi
    Paunescu, Laurentiu
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) : 2445 - 2467
  • [48] Sharp Lipschitz constant of bi-Lipschitz automorphism on Cantor set
    XIONG Ying1
    Science China Mathematics, 2009, (04) : 709 - 719
  • [49] Sharp Lipschitz constant of bi-Lipschitz automorphism on Cantor set
    Xiong Ying
    Wang LiSha
    Xi LiFeng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (04): : 709 - 719
  • [50] A bi-Lipschitz continuous, volume preserving map from the unit ball onto a cube
    Griepentrog, Jens Andre
    Hoeppner, Wolfgang
    Kaiser, Hans-Christoph
    Rehberg, Joachim
    NOTE DI MATEMATICA, 2008, 28 (01): : 177 - 193