What Happens to a Manifold Under a Bi-Lipschitz Map?

被引:4
|
作者
Eftekhari, Armin [1 ]
Wakin, Michael B. [2 ]
机构
[1] Univ Texas Austin, ICES, 201 East 24th St,POB 3-420, Austin, TX 78712 USA
[2] Colorado Sch Mines, Dept Elect Engn & Comp Sci, 1500 Illinois St, Golden, CO 80401 USA
关键词
Manifolds; Reach; Bi-Lipschitz maps; Compressive sensing; Random projections; EMBEDDINGS;
D O I
10.1007/s00454-016-9847-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study geometric and topological properties of the image of a smooth submanifold of under a bi-Lipschitz map to . In particular, we characterize how the dimension, diameter, volume, and reach of the embedded manifold relate to the original. Our main result establishes a lower bound on the reach of the embedded manifold in the case where and the bi-Lipschitz map is linear. We discuss implications of this work in signal processing and machine learning, where bi-Lipschitz maps on low-dimensional manifolds have been constructed using randomized linear operators.
引用
收藏
页码:641 / 673
页数:33
相关论文
共 50 条
  • [31] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    Baudier, F.
    Motakis, P.
    Schlumprecht, Th.
    Zsak, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 203 - 235
  • [32] Bi-Lipschitz Characterization of Space Curves
    Fernandes, Alexandre
    Jelonek, Zbigniew
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [33] Bi-Lipschitz parts of quasisymmetric mappings
    Azzam, Jonas
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) : 589 - 648
  • [34] A planar bi-Lipschitz extension theorem
    Daneri, Sara
    Pratelli, Aldo
    ADVANCES IN CALCULUS OF VARIATIONS, 2015, 8 (03) : 221 - 266
  • [35] Multiplicity of singularities is not a bi-Lipschitz invariant
    Birbrair, Lev
    Fernandes, Alexandre
    Edson Sampaio, J.
    Verbitsky, Misha
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 115 - 121
  • [36] BI-LIPSCHITZ EMBEDDING OF PROJECTIVE METRICS
    Kovalev, Leonid V.
    CONFORMAL GEOMETRY AND DYNAMICS, 2014, 18 : 110 - 118
  • [37] Multiplicity of singularities is not a bi-Lipschitz invariant
    Lev Birbrair
    Alexandre Fernandes
    J. Edson Sampaio
    Misha Verbitsky
    Mathematische Annalen, 2020, 377 : 115 - 121
  • [38] Bi-Lipschitz Characterization of Space Curves
    Alexandre Fernandes
    Zbigniew Jelonek
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [39] BI-LIPSCHITZ EMBEDDINGS OF QUASICONFORMAL TREES
    David, Guy c.
    Eriksson-bique, S. Y. L. V. E. S. T. E. R.
    Vellis, V. Y. R. O. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2031 - 2044
  • [40] ON BI-LIPSCHITZ STABILITY OF FAMILIES OF FUNCTIONS
    Valette, Guillaume
    JOURNAL OF SINGULARITIES, 2012, 6 : 179 - 198