What Happens to a Manifold Under a Bi-Lipschitz Map?

被引:4
|
作者
Eftekhari, Armin [1 ]
Wakin, Michael B. [2 ]
机构
[1] Univ Texas Austin, ICES, 201 East 24th St,POB 3-420, Austin, TX 78712 USA
[2] Colorado Sch Mines, Dept Elect Engn & Comp Sci, 1500 Illinois St, Golden, CO 80401 USA
关键词
Manifolds; Reach; Bi-Lipschitz maps; Compressive sensing; Random projections; EMBEDDINGS;
D O I
10.1007/s00454-016-9847-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study geometric and topological properties of the image of a smooth submanifold of under a bi-Lipschitz map to . In particular, we characterize how the dimension, diameter, volume, and reach of the embedded manifold relate to the original. Our main result establishes a lower bound on the reach of the embedded manifold in the case where and the bi-Lipschitz map is linear. We discuss implications of this work in signal processing and machine learning, where bi-Lipschitz maps on low-dimensional manifolds have been constructed using randomized linear operators.
引用
收藏
页码:641 / 673
页数:33
相关论文
共 50 条