Impact on Image Noise of Incorporating Detector Blurring Into Image Reconstruction for a Small Animal PET Scanner

被引:6
|
作者
Lee, Kisung [1 ]
Miyaoka, Robert S. [2 ]
Lewellen, Tom K. [2 ]
Alessio, Adam M. [2 ]
Kinahan, Paul E. [2 ]
机构
[1] Korea Univ, Dept Radiol Sci, Seoul 136703, South Korea
[2] Univ Washington, Dept Radiol, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
Detector blurring; Fourier rebinning; noise property; ordered subsets expectation maximization (OSEM); positron emission tomography; RESOLUTION; ALGORITHMS; EM;
D O I
10.1109/TNS.2009.2021610
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the noise characteristics of an image reconstruction algorithm that incorporates a model of the non-stationary detector blurring (DB) for a mouse-imaging positron emission tomography (PET) scanner. The algorithm uses ordered subsets expectation maximization (OSEM) image reconstruction., which is used to suppress statistical noise. Including the non-stationary detector blurring in the reconstruction process [OSEM(DB)] has been shown to increase contrast in images reconstructed from measured data acquired on the fully-3D MiCES PET scanner developed at the University of Washington. As an extension, this study uses simulation studies with a fully-3D acquisition mode and our proposed FORE+OSEM(DB) reconstruction process to evaluate the volumetric contrast versus noise trade-offs of this approach. Multiple realizations were simulated to estimate the true noise properties of the algorithm. The results show that incorporation of detector blurring FORE+OSEM(DB) into the reconstruction process improves the contrast/noise trade-offs compared to FORE+OSEM in a radially dependent manner. Adding post reconstruction 3D Gaussian smoothing to FORE+OSENT and FORE+OSEM(DB) reduces the contrast versus noise advantages of FORE+OSEM(DB).
引用
收藏
页码:2769 / 2776
页数:8
相关论文
共 50 条
  • [41] Image quality assessment based on blurring and noise level
    Zhao, Ju-Feng
    Feng, Hua-Jun
    Xu, Zhi-Hai
    Li, Qi
    Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2010, 21 (07): : 1062 - 1066
  • [42] Impact of Detector Defects on Image Quality and Quantification for the microPET Focus 220 Scanner
    Lehnert, Wencke
    Meikle, Steven R.
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 3032 - 3036
  • [43] Characterization of a Small Animal PET Detector Block Incorporating a Digital Photon Counter Array
    Stortz, Greg
    Thompson, Christopher J.
    Retiere, Fabrice
    Goertzen, Andrew L.
    Kozlowski, Piotr
    Shams, Ehsan
    Thiessen, Jonathan D.
    Walker, Matthew D.
    Sossi, Vesna
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (03) : 732 - 739
  • [44] A total-body small animal PET scanner with a 4-layer DOI detector
    Kang, Han Gyu
    Tashima, Hideaki
    Yoshida, Eiji
    Higuchi, Makoto
    Yamaya, Taiga
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [45] High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner
    Qi, JY
    Leahy, RM
    Cherry, SR
    Chatziioannou, A
    Farquhar, TH
    PHYSICS IN MEDICINE AND BIOLOGY, 1998, 43 (04): : 1001 - 1013
  • [46] Detector development for microPET II:: a 1 μl resolution PET scanner for small animal imaging
    Chatziioannou, A
    Tai, YC
    Doshi, N
    Cherry, SR
    PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (11): : 2899 - 2910
  • [47] Design of an Image Fusion Phantom for a Small Animal microPET/CT Scanner Prototype
    Nava-Garcia, Dante
    Alva-Sanchez, Hector
    Murrieta-Rodriguez, Tirso
    Martinez-Davalos, Arnulfo
    Rodriguez-Villafuerte, Mercedes
    ELEVENTH MEXICAN SYMPOSIUM ON MEDICAL PHYSICS, 2010, 1310 : 118 - 121
  • [48] Bayesian PET image reconstruction incorporating anato-functional joint entropy
    Tang, Jing
    Rahmim, Arman
    PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (23): : 7063 - 7075
  • [49] Massively Parallel Image Reconstruction for the BNL Breast Scanner PET Tomograph using CUDA
    Purschke, M. L.
    Southekal, S. S.
    Ravindranath, B.
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-5, 2009, : 2374 - +
  • [50] Dynamic PET image reconstruction incorporating a median nonlocal means kernel method
    Cao, Shuangliang
    He, Yuru
    Sun, Hao
    Wu, Huiqin
    Chen, Wufan
    Lu, Lijun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 139