Right Ventricle Segmentation of Magnetic Resonance Image Using the Modified Convolutional Neural Network

被引:2
|
作者
Dharwadkar, Nagaraj V. [1 ]
Savvashe, Amruta K. [1 ]
机构
[1] Rajarambapu Inst Technol, Dept Comp Sci & Engn, Sangli 415414, Maharashtra, India
关键词
Right ventricle segmentation; Convolutional neural network; MRI segmentation; CARDIAC MRI;
D O I
10.1007/s13369-020-05309-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the segmentation model is developed using the convolutional neural network for automatic segmentation of a right ventricle MRI image. The proposed model is trained end-to-end using an RVSC dataset that contains the right ventricle magnetic resonance images. The proposed model gives state-of-art achievement for dice metric and also for the Jaccard index. The proposed model achieves an optimal model performance of dice metric performance with 0.91 (0.10) for the training dataset and 0.88 (0.12) for the validation dataset.
引用
收藏
页码:3713 / 3722
页数:10
相关论文
共 50 条
  • [41] On the contextual aspects of using deep convolutional neural network for semantic image segmentation
    Wang, Chunlai
    Mauch, Lukas
    Saxena, Mehul Manoj
    Yang, Bin
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (05)
  • [42] Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network
    Pal, Anabik
    Garain, Utpal
    Chandra, Aditi
    Chatterjee, Raghunath
    Senapati, Swapan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 159 : 59 - 69
  • [43] Tree-like neural network for brain magnetic resonance image segmentation
    Valova, I
    Kosugi, Y
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XX, 1997, 3164 : 512 - 523
  • [44] OCT SEGMENTATION USING CONVOLUTIONAL NEURAL NETWORK
    George, Neetha
    Jiji, C., V
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING WORKSHOPS (IEEE ISBI WORKSHOPS 2020), 2020,
  • [45] Modified fuzzy hopfield neural network using for MRI image segmentation
    Rezai-Rad, Gholamali
    Ebrahimi, Reza Valipour
    2006 INTERNATIONAL CONFERENCE ON BIOMEDICAL AND PHARMACEUTICAL ENGINEERING, VOLS 1 AND 2, 2006, : 58 - +
  • [46] Adaptive Image Segmentation Using Modified Pulse Coupled Neural Network
    Cai, Wei
    Li, Gang
    Li, Min
    Li, Xiaoyan
    ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT 2, PROCEEDINGS, 2008, 5264 : 794 - +
  • [47] Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images
    Yang, Xulei
    Zeng, Zeng
    Yi, Su
    IET COMPUTER VISION, 2017, 11 (08) : 643 - 649
  • [48] Cascaded Multi-scale Attention Network for Automatic Segmentation of the Right Ventricle in Cardiac Magnetic Resonance
    Lu, Yuetong
    Fang, Liangkun
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 35 - 39
  • [49] Magnetic resonance image segmentation of the compressed spinal cord in patients with degenerative cervical myelopathy using convolutional neural networks
    Nozawa, Kyohei
    Maki, Satoshi
    Furuya, Takeo
    Okimatsu, Sho
    Inoue, Takaki
    Yunde, Atsushi
    Miura, Masataka
    Shiratani, Yuki
    Shiga, Yasuhiro
    Inage, Kazuhide
    Eguchi, Yawara
    Ohtori, Seiji
    Orita, Sumihisa
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (01) : 45 - 54
  • [50] Magnetic resonance image segmentation of the compressed spinal cord in patients with degenerative cervical myelopathy using convolutional neural networks
    Kyohei Nozawa
    Satoshi Maki
    Takeo Furuya
    Sho Okimatsu
    Takaki Inoue
    Atsushi Yunde
    Masataka Miura
    Yuki Shiratani
    Yasuhiro Shiga
    Kazuhide Inage
    Yawara Eguchi
    Seiji Ohtori
    Sumihisa Orita
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 45 - 54