Right Ventricle Segmentation of Magnetic Resonance Image Using the Modified Convolutional Neural Network

被引:2
|
作者
Dharwadkar, Nagaraj V. [1 ]
Savvashe, Amruta K. [1 ]
机构
[1] Rajarambapu Inst Technol, Dept Comp Sci & Engn, Sangli 415414, Maharashtra, India
关键词
Right ventricle segmentation; Convolutional neural network; MRI segmentation; CARDIAC MRI;
D O I
10.1007/s13369-020-05309-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the segmentation model is developed using the convolutional neural network for automatic segmentation of a right ventricle MRI image. The proposed model is trained end-to-end using an RVSC dataset that contains the right ventricle magnetic resonance images. The proposed model gives state-of-art achievement for dice metric and also for the Jaccard index. The proposed model achieves an optimal model performance of dice metric performance with 0.91 (0.10) for the training dataset and 0.88 (0.12) for the validation dataset.
引用
收藏
页码:3713 / 3722
页数:10
相关论文
共 50 条
  • [21] Hyperspectral Image Classification Using Modified Convolutional Neural Network
    Kalita, Shashanka
    Biswas, Mantosh
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1884 - 1889
  • [22] Multiple Attention Fully Convolutional Network for Automated Ventricle Segmentation in Cardiac Magnetic Resonance Imaging
    Zhang, Tinghong
    Li, Ao
    Wang, Minghui
    Wu, Xiaodong
    Qiu, Bensheng
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (05) : 1037 - 1045
  • [23] Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey
    Sultana, Farhana
    Sufian, Abu
    Dutta, Paramartha
    KNOWLEDGE-BASED SYSTEMS, 2020, 201 (201-202)
  • [24] Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image
    Shin, Hyunkwang
    Choi, Gyu Sang
    Shon, Oog-Jin
    Kim, Gi Beom
    Chang, Min Cheol
    BMC MUSCULOSKELETAL DISORDERS, 2022, 23 (01)
  • [25] A new method for segmentation of medical image using convolutional neural network
    Luo, Fugui
    Qin, Yunchu
    Li, Mingzhen
    Song, Qian
    JOURNAL OF OPTICS-INDIA, 2024, 53 (04): : 3411 - 3420
  • [26] Image Segmentation of Salt Deposits Using Deep Convolutional Neural Network
    Liu, Bo
    Jing, Haipeng
    Li, Jianqiang
    Li, Yong
    Qu, Guangzhi
    Gu, Rentao
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3304 - 3309
  • [27] Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image
    Hyunkwang Shin
    Gyu Sang Choi
    Oog-Jin Shon
    Gi Beom Kim
    Min Cheol Chang
    BMC Musculoskeletal Disorders, 23
  • [28] Evaluation of magnetic resonance image segmentation in brain low-grade gliomas using support vector machine and convolutional neural network
    Yang, Qifan
    Zhang, Huijuan
    Xia, Jun
    Zhang, Xiaoliang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (01) : 300 - 316
  • [29] MAGNETIC RESONANCE FINGERPRINTING USING A RESIDUAL CONVOLUTIONAL NEURAL NETWORK
    Song, Pingfan
    Eldar, Yonina C.
    Mazor, Gal
    Rodrigues, Miguel R. D.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1040 - 1044
  • [30] Fast Fully Automatic Segmentation of the Severely Abnormal Human Right Ventricle from Cardiovascular Magnetic Resonance Images using a Multi-scale 3D Convolutional Neural Network
    Giannakidis, Archontis
    Kamnitsas, Konstantinos
    Spadotto, Veronica
    Keegan, Jennifer
    Smith, Gillian
    Glocker, Ben
    Rueckert, Daniel
    Ernst, Sabine
    Gatzoulis, Michael A.
    Pennell, Dudley J.
    Babu-Narayan, Sonya
    Firmin, David N.
    2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 42 - 46