Right Ventricle Segmentation of Magnetic Resonance Image Using the Modified Convolutional Neural Network

被引:2
|
作者
Dharwadkar, Nagaraj V. [1 ]
Savvashe, Amruta K. [1 ]
机构
[1] Rajarambapu Inst Technol, Dept Comp Sci & Engn, Sangli 415414, Maharashtra, India
关键词
Right ventricle segmentation; Convolutional neural network; MRI segmentation; CARDIAC MRI;
D O I
10.1007/s13369-020-05309-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the segmentation model is developed using the convolutional neural network for automatic segmentation of a right ventricle MRI image. The proposed model is trained end-to-end using an RVSC dataset that contains the right ventricle magnetic resonance images. The proposed model gives state-of-art achievement for dice metric and also for the Jaccard index. The proposed model achieves an optimal model performance of dice metric performance with 0.91 (0.10) for the training dataset and 0.88 (0.12) for the validation dataset.
引用
收藏
页码:3713 / 3722
页数:10
相关论文
共 50 条
  • [1] Right Ventricle Segmentation of Magnetic Resonance Image Using the Modified Convolutional Neural Network
    Nagaraj V. Dharwadkar
    Amruta K. Savvashe
    Arabian Journal for Science and Engineering, 2021, 46 : 3713 - 3722
  • [2] Cardiac magnetic resonance image segmentation based on convolutional neural network
    Liu, Duqiu
    Jia, Zheng
    Jin, Ming
    Liu, Qian
    Liao, Zhiliang
    Zhong, Junyan
    Ye, Haowen
    Chen, Gang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 197
  • [3] Automatic Segmentation Based on the Cardiac Magnetic Resonance Image Using a Modified Fully Convolutional Network
    Yang, Xinyu
    Sung, Yingming
    Zhang, Yuan
    Kos, Anton
    ELEKTROTEHNISKI VESTNIK, 2020, 87 (1-2): : 68 - 73
  • [4] Automatic segmentation based on the cardiac magnetic resonance image using a modified fully convolutional network
    Yang, Xinyu
    Sun, Yingming
    Zhang, Yuan
    Kos, Anton
    Elektrotehniski Vestnik/Electrotechnical Review, 2020, 87 (1-2): : 68 - 73
  • [5] Right Ventricle Segmentation in Cardiac MR Images Using Convolutional Neural Network Architecture
    Slama, Sana
    Mahmoudi, Ramzi
    Hmida, Badii
    Maatouk, Mezri
    Bedoui, Mohamed Hedi
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 1653 : 352 - 359
  • [6] Magnetic Resonance Image Segmentation Based on Multi-Scale Convolutional Neural Network
    Hao, Jinglong
    Li, Xiaoxi
    Hou, Yanxia
    IEEE ACCESS, 2020, 8 (08): : 65758 - 65768
  • [7] Convolutional Neural Networks for Prostate Magnetic Resonance Image Segmentation
    Hassanzadeh, Tahereh
    Hamey, Leonard G. C.
    Ho-Shon, Kevin
    IEEE ACCESS, 2019, 7 : 36748 - 36760
  • [8] Automated segmentation and classification of supraspinatus fatty infiltration in shoulder magnetic resonance image using a convolutional neural network
    Saavedra, Juan Pablo
    Droppelmann, Guillermo
    Jorquera, Carlos
    Feijoo, Felipe
    FRONTIERS IN MEDICINE, 2024, 11
  • [9] Segmentation based medical image compression of brain magnetic resonance images using optimized convolutional neural network
    Vikraman, Bindu Puthentharayil
    Jabeena, A.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 26643 - 26661
  • [10] Segmentation based medical image compression of brain magnetic resonance images using optimized convolutional neural network
    Bindu Puthentharayil Vikraman
    A Jabeena
    Multimedia Tools and Applications, 2024, 83 : 26643 - 26661