Centralisers of spaces of symmetric tensor products and applications

被引:1
|
作者
Boyd, Christopher [1 ]
Lassalle, Silvia
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
[2] Univ Buenos Aires, Dept Matemat, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina
关键词
D O I
10.1007/s00209-006-0957-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the centraliser of the space of n-fold symmetric injective tensors, n >= 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applications of this results to centralisers of spaces of homogeneous polynomials and complex Banach spaces. In addition, we derive a Banach-Stone Theorem for spaces of vector-valued approximable polynomials.
引用
收藏
页码:539 / 552
页数:14
相关论文
共 50 条
  • [1] Centralisers of spaces of symmetric tensor products and applications
    Christopher Boyd
    Silvia Lassalle
    [J]. Mathematische Zeitschrift, 2006, 254 : 539 - 552
  • [2] Tensor topologies on spaces of symmetric tensor products
    Ansemil, Jose M.
    Ponte, Socorro
    [J]. NOTE DI MATEMATICA, 2006, 25 (01): : 35 - 47
  • [3] Complementation in spaces of symmetric tensor products and polynomials
    Blasco, F
    [J]. STUDIA MATHEMATICA, 1997, 123 (02) : 165 - 173
  • [4] FIVE BASIC LEMMAS FOR SYMMETRIC TENSOR PRODUCTS OF NORMED SPACES
    Carando, Daniel
    Galicer, Daniel
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (02): : 35 - 60
  • [5] The extension theorem for norms on symmetric tensor products of normed spaces
    Floret, K
    [J]. RECENT PROGRESS IN FUNCTIONAL ANALYSIS, 2001, 189 : 225 - 237
  • [6] Daugavet property in projective symmetric tensor products of Banach spaces
    Martin, Miguel
    Rueda Zoca, Abraham
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (02)
  • [7] Daugavet property in projective symmetric tensor products of Banach spaces
    Miguel Martín
    Abraham Rueda Zoca
    [J]. Banach Journal of Mathematical Analysis, 2022, 16
  • [8] Geometric theory of spaces of integral polynomials and symmetric tensor products
    Boyd, C
    Ryan, RA
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (01) : 18 - 42
  • [9] Symmetric strong diameter two property in tensor products of Banach spaces
    Langemets, Johann
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [10] On products of noncommutative symmetric quasi Banach spaces and applications
    Bekjan, Turdebek N.
    Ospanov, Myrzagali N.
    [J]. POSITIVITY, 2021, 25 (01) : 121 - 148