NONCOMMUTATIVE DIFFERENTIALS ON POISSON-LIE GROUPS AND PRE-LIE ALGEBRAS

被引:10
|
作者
Majid, Shahn [1 ]
Tao, Wen-Qing [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
noncommutative geometry; quantum group; left-covariant; differential calculus; bicovariant; deformation; Poisson-Lie group; pre-Lie algebra; (co)tangent bundle; bicrossproduct; bosonisation; QUANTUM GROUPS;
D O I
10.2140/pjm.2016.284.213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the quantisation of a connected simply connected Poisson-Lie group admits a left-covariant noncommutative differential structure at lowest deformation order if and only if the dual of its Lie algebra admits a pre-ie algebra structure. As an example, we find a pre-Lie algebra structure underlying the standard 3-dimensional differential structure on C-q [SU2]. At the noncommutative geometry level we show that the enveloping algebra U (m) of a Lie algebra m, viewed as quantisation of m*, admits a connected differential exterior algebra of classical dimension if and only if m admits a pre-Lie algebra structure. We give an example where m is solvable and we extend the construction to tangent and cotangent spaces of Poisson-Lie groups by using bicross-sum and bosonisation of Lie bialgebras. As an example, we obtain a 6-dimensional left-covariant differential structure on the bicrossproduct quantum group C[SU2] proportional to U-lambda (su(2)*).
引用
收藏
页码:213 / 256
页数:44
相关论文
共 50 条
  • [31] FREE BRACE ALGEBRAS ARE FREE PRE-LIE ALGEBRAS
    Foissy, Loic
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (09) : 3358 - 3369
  • [32] Some remarks on the Akivis algebras and the Pre-Lie algebras
    Yuqun Chen
    Yu Li
    Czechoslovak Mathematical Journal, 2011, 61 : 707 - 720
  • [33] LIE SUPERBIALGEBRAS AND POISSON-LIE SUPERGROUPS
    ANDRUSKIEWITSCH, N
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1993, 63 : 147 - 163
  • [34] Pre-Lie algebras and Hopf algebras related to renormalization
    Chapoton, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (08): : 681 - 684
  • [35] Free pre-Lie algebras of finite posets
    Ayadi, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (09)
  • [36] SOME REMARKS ON THE AKIVIS ALGEBRAS AND THE PRE-LIE ALGEBRAS
    Chen, Yuqun
    Li, Yu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (03) : 707 - 720
  • [37] Families of Hopf algebras of trees and pre-Lie algebras
    Van der Laan, Pepijn
    Moerdijk, Ieke
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2006, 8 (01) : 243 - 256
  • [38] Stokes phenomena, Poisson-Lie groups and quantum groups
    Laredo, Valerio Toledano
    Xu, Xiaomeng
    ADVANCES IN MATHEMATICS, 2023, 429
  • [39] Universal Enveloping Lie Rota-Baxter Algebras of Pre-Lie and Post-Lie Algebras
    Gubarev, V. Yu.
    ALGEBRA AND LOGIC, 2019, 58 (01) : 1 - 14
  • [40] (1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups
    Ballesteros, A
    Herranz, FJ
    Parashar, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (17): : 3445 - 3465