NONCOMMUTATIVE DIFFERENTIALS ON POISSON-LIE GROUPS AND PRE-LIE ALGEBRAS

被引:10
|
作者
Majid, Shahn [1 ]
Tao, Wen-Qing [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
noncommutative geometry; quantum group; left-covariant; differential calculus; bicovariant; deformation; Poisson-Lie group; pre-Lie algebra; (co)tangent bundle; bicrossproduct; bosonisation; QUANTUM GROUPS;
D O I
10.2140/pjm.2016.284.213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the quantisation of a connected simply connected Poisson-Lie group admits a left-covariant noncommutative differential structure at lowest deformation order if and only if the dual of its Lie algebra admits a pre-ie algebra structure. As an example, we find a pre-Lie algebra structure underlying the standard 3-dimensional differential structure on C-q [SU2]. At the noncommutative geometry level we show that the enveloping algebra U (m) of a Lie algebra m, viewed as quantisation of m*, admits a connected differential exterior algebra of classical dimension if and only if m admits a pre-Lie algebra structure. We give an example where m is solvable and we extend the construction to tangent and cotangent spaces of Poisson-Lie groups by using bicross-sum and bosonisation of Lie bialgebras. As an example, we obtain a 6-dimensional left-covariant differential structure on the bicrossproduct quantum group C[SU2] proportional to U-lambda (su(2)*).
引用
收藏
页码:213 / 256
页数:44
相关论文
共 50 条
  • [21] Yangians as Pre-Lie and Tridendriform Algebras
    Doikou, Anastasia
    GEOMETRIC METHODS IN PHYSICS XL, WGMP 2022, 2024, : 233 - 250
  • [22] Metacurvature of Riemannian Poisson-Lie groups
    Bahayou, Amine
    Boucetta, Mohamed
    JOURNAL OF LIE THEORY, 2009, 19 (03) : 439 - 462
  • [23] Pre-Lie Algebras in Positive Characteristic
    Dokas, I.
    JOURNAL OF LIE THEORY, 2013, 23 (04) : 937 - 952
  • [24] A rigidity theorem for pre-Lie algebras
    Livernet, Muriel
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (01) : 1 - 18
  • [25] Nijenhuis operators on pre-Lie algebras
    Wang, Qi
    Sheng, Yunhe
    Bai, Chengming
    Liu, Jiefeng
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (07)
  • [26] Lie elements in pre-Lie algebras, trees and cohomology operations
    Markl, M.
    JOURNAL OF LIE THEORY, 2007, 17 (02) : 241 - 261
  • [27] Universal Enveloping Lie Rota–Baxter Algebras of Pre-Lie and Post-Lie Algebras
    V. Yu. Gubarev
    Algebra and Logic, 2019, 58 : 1 - 14
  • [28] Monomial Bases and Pre-Lie Structure for Free Lie Algebras
    Al-Kaabi, Mahdi J. Hasan
    Manchon, Dominique
    Patras, Frederic
    JOURNAL OF LIE THEORY, 2018, 28 (04) : 941 - 967
  • [29] Lie algebras and Lie groups over noncommutative rings
    Berenstein, Arkady
    Retakh, Vladimir
    ADVANCES IN MATHEMATICS, 2008, 218 (06) : 1723 - 1758
  • [30] ON DIFERENTIAL CALCULUS ON PRE-LIE GROUPS
    Nicolae, Mihai
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 61 (01): : 19 - 28