Characterization of a gate-defined double quantum dot in a Si/SiGe nanomembrane

被引:8
|
作者
Knapp, T. J. [1 ,2 ]
Mohr, R. T. [2 ]
Li, Yize Stephanie [3 ]
Thorgrimsson, Brandur [1 ,2 ]
Foote, Ryan H. [1 ,2 ]
Wu, Xian [2 ]
Ward, Daniel R. [2 ]
Savage, D. E. [3 ]
Lagally, M. G. [1 ,3 ]
Friesen, Mark [1 ,2 ]
Coppersmith, S. N. [1 ,2 ]
Eriksson, M. A. [1 ,2 ]
机构
[1] Univ Wisconsin, Wisconsin Inst Quantum Informat, 1150 Univ Ave, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Mat Sci & Engn, 1415 Engn Dr, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
nanomembrane; quantum dot; Si/SiGe heterostructure; strain grading; SINGLE-CRYSTAL SIGE; STRAIN RELAXATION; SILICON; QUBIT; HETEROSTRUCTURES; ELECTRONICS; MOBILITY;
D O I
10.1088/0957-4484/27/15/154002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report the fabrication and characterization of a gate-defined double quantum dot formed in a Si/SiGe nanomembrane. In the past, all gate-defined quantum dots in Si/SiGe heterostructures were formed on top of strain-graded virtual substrates. The strain grading process necessarily introduces misfit dislocations into a heterostructure, and these defects introduce lateral strain inhomogeneities, mosaic tilt, and threading dislocations. The use of a SiGe nanomembrane as the virtual substrate enables the strain relaxation to be entirely elastic, eliminating the need for misfit dislocations. However, in this approach the formation of the heterostructure is more complicated, involving two separate epitaxial growth procedures separated by a wet-transfer process that results in a buried non-epitaxial interface 625 nm from the quantum dot. We demonstrate that in spite of this buried interface in close proximity to the device, a double quantum dot can be formed that is controllable enough to enable tuning of the inter-dot tunnel coupling, the identification of spin states, and the measurement of a singlet-to-triplet transition as a function of an applied magnetic field.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Electronic g factor and tunable spin-orbit coupling in a gate-defined InSbAs quantum dot
    Metti, S.
    Thomas, C.
    Manfra, M. J.
    [J]. PHYSICAL REVIEW B, 2023, 108 (23)
  • [32] Gate-Defined Graphene Quantum Point Contact in the Quantum Hall Regime
    Nakaharai, S.
    Williams, J. R.
    Marcus, C. M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (03)
  • [33] Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
    van Diepen, C. J.
    Hsiao, T. -K.
    Mukhopadhyay, U.
    Reichl, C.
    Wegscheider, W.
    Vandersypen, L. M. K.
    [J]. PHYSICAL REVIEW X, 2021, 11 (04)
  • [34] Preparation and Readout of Multielectron High-Spin States in a Gate-Defined GaAs/AlGaAs Quantum Dot
    Kiyama, H.
    Yoshimi, K.
    Kato, T.
    Nakajima, T.
    Oiwa, A.
    Tarucha, S.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (08)
  • [35] Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots
    Tajiri, T.
    Sakai, Y.
    Kuruma, K.
    Ji, S. M.
    Kiyama, H.
    Oiwa, A.
    Ritzmann, J.
    Ludwig, A.
    Wieck, A. D.
    Ota, Y.
    Arakawa, Y.
    Iwamoto, S.
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (59)
  • [36] Characterization of SiGe/Si Quantum Dot Grown by using APRPCVD
    Kim, T. S.
    Jeong, M. R.
    Mun, N. J.
    Kil, Y. -H.
    Kim, J. D.
    Jeong, T. S.
    Kang, S.
    Kim, S. H.
    Choi, C. -J.
    Shim, K. H.
    [J]. ANALYTICAL TECHNIQUES FOR SEMICONDUCTOR MATERIALS AND PROCESS CHARACTERIZATION 6 (ALTECH 2009), 2009, 25 (03): : 263 - 269
  • [37] Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon
    Mi, X.
    Cady, J. V.
    Zajac, D. M.
    Stehlik, J.
    Edge, L. F.
    Petta, J. R.
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (04)
  • [38] Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
    Kawakami, Erika
    Jullien, Thibaut
    Scarlino, Pasquale
    Ward, Daniel R.
    Savage, Donald E.
    Lagally, Max G.
    Dobrovitski, Viatcheslav V.
    Friesen, Mark
    Coppersmith, Susan N.
    Eriksson, Mark A.
    Vandersypen, Lieven M. K.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (42) : 11738 - 11743
  • [39] Edgeless and purely gate-defined nanostructures in InAs quantum wells
    Mittag, Christopher
    Karalic, Matija
    Lei, Zijin
    Tschirky, Thomas
    Wegscheider, Werner
    Ihn, Thomas
    Ensslin, Klaus
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (26)
  • [40] Nanofabrication of Gate-defined GaAs/AlGaAs Lateral Quantum Dots
    Bureau-Oxton, Chloe
    Lemyre, Julien Camirand
    Pioro-Ladriere, Michel
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (81):