Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots

被引:8
|
作者
Tajiri, T. [1 ,6 ]
Sakai, Y. [2 ]
Kuruma, K. [1 ]
Ji, S. M. [1 ]
Kiyama, H. [2 ]
Oiwa, A. [2 ,3 ]
Ritzmann, J. [4 ]
Ludwig, A. [4 ]
Wieck, A. D. [4 ]
Ota, Y. [5 ]
Arakawa, Y. [5 ]
Iwamoto, S. [1 ,5 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[2] Osaka Univ, Inst Sci & Ind Res, 8-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan
[3] Osaka Univ, Inst Open & Transdisciplinary Res Initiat, Quantum Informat & Quantum Biol Div, Osaka 5650871, Japan
[4] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys Bochum, D-44780 Bochum, Germany
[5] Univ Tokyo, Inst Nano Quantum Informat Elect, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[6] Univ Electrocommun, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
关键词
SINGLE-ELECTRON; SPIN; ENTANGLEMENT;
D O I
10.7567/1347-4065/ab5b62
中图分类号
O59 [应用物理学];
学科分类号
摘要
Among various solid-state systems, gate-defined quantum dots (QD) with high scalability and controllability for single electron spin qubits are promising candidates to realize quantum spin-photon interface. The efficiency of the spin-photon interface is expected to be significantly enhanced by optical coupling of gate-defined QDs with photonic crystal (PhC) nanocavities. As the first step towards this optical coupling, we designed and experimentally demonstrated a PhC nanocavity with electrodes. The electrodes, which can form a single QD, were introduced on the top surfaces of two-dimensional PhC nanocavities with a position accuracy of a few tens of nanometers. Despite the electrodes, a resonant mode was confirmed for the PhC nanocavities through micro-photoluminescence spectroscopy. This work marks a crucial step towards optical coupling between gate-defined QDs and PhC nanocavities. (C) 2020 The Japan Society of Applied Physics
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Gate-defined quantum dots in intrinsic silicon
    Angus, Susan J.
    Ferguson, Andrew J.
    Dzurak, Andrew S.
    Clark, Robert G.
    NANO LETTERS, 2007, 7 (07) : 2051 - 2055
  • [2] Gate-defined quantum dots on carbon nanotubes
    Biercuk, MJ
    Garaj, S
    Mason, N
    Chow, JM
    Marcus, CM
    NANO LETTERS, 2005, 5 (07) : 1267 - 1271
  • [3] Quantum computation on gate-defined semiconductor quantum dots
    Li HaiOu
    Yao Bing
    Tu Tao
    Guo GuoPing
    CHINESE SCIENCE BULLETIN, 2012, 57 (16): : 1919 - 1924
  • [4] Quantum computation on gate-defined semiconductor quantum dots
    LI HaiOu
    Science Bulletin, 2012, (16) : 1919 - 1924
  • [5] Electron confinement in graphene with gate-defined quantum dots
    Fehske, Holger
    Hager, Georg
    Pieper, Andreas
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (08): : 1868 - 1871
  • [6] Electron dynamics in graphene with gate-defined quantum dots
    Pieper, A.
    Heinisch, R. L.
    Fehske, H.
    EPL, 2013, 104 (04)
  • [7] Bell inequality violation in gate-defined quantum dots
    Paul Steinacker
    Tuomo Tanttu
    Wee Han Lim
    Nard Dumoulin Stuyck
    MengKe Feng
    Santiago Serrano
    Ensar Vahapoglu
    Rocky Y. Su
    Jonathan Y. Huang
    Cameron Jones
    Kohei M. Itoh
    Fay E. Hudson
    Christopher C. Escott
    Andrea Morello
    Andre Saraiva
    Chih Hwan Yang
    Andrew S. Dzurak
    Arne Laucht
    Nature Communications, 16 (1)
  • [8] Gate-defined coupled quantum dots in topological insulators
    Ertler, Christian
    Raith, Martin
    Fabian, Jaroslav
    PHYSICAL REVIEW B, 2014, 89 (07):
  • [9] Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots
    Dorfner, D. F.
    Huerlimann, T.
    Abstreiter, G.
    Finley, J. J.
    APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [10] Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
    van Diepen, C. J.
    Hsiao, T. -K.
    Mukhopadhyay, U.
    Reichl, C.
    Wegscheider, W.
    Vandersypen, L. M. K.
    PHYSICAL REVIEW X, 2021, 11 (04)