Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots

被引:8
|
作者
Tajiri, T. [1 ,6 ]
Sakai, Y. [2 ]
Kuruma, K. [1 ]
Ji, S. M. [1 ]
Kiyama, H. [2 ]
Oiwa, A. [2 ,3 ]
Ritzmann, J. [4 ]
Ludwig, A. [4 ]
Wieck, A. D. [4 ]
Ota, Y. [5 ]
Arakawa, Y. [5 ]
Iwamoto, S. [1 ,5 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[2] Osaka Univ, Inst Sci & Ind Res, 8-1 Mihogaoka, Ibaraki, Osaka 5670047, Japan
[3] Osaka Univ, Inst Open & Transdisciplinary Res Initiat, Quantum Informat & Quantum Biol Div, Osaka 5650871, Japan
[4] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys Bochum, D-44780 Bochum, Germany
[5] Univ Tokyo, Inst Nano Quantum Informat Elect, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[6] Univ Electrocommun, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
关键词
SINGLE-ELECTRON; SPIN; ENTANGLEMENT;
D O I
10.7567/1347-4065/ab5b62
中图分类号
O59 [应用物理学];
学科分类号
摘要
Among various solid-state systems, gate-defined quantum dots (QD) with high scalability and controllability for single electron spin qubits are promising candidates to realize quantum spin-photon interface. The efficiency of the spin-photon interface is expected to be significantly enhanced by optical coupling of gate-defined QDs with photonic crystal (PhC) nanocavities. As the first step towards this optical coupling, we designed and experimentally demonstrated a PhC nanocavity with electrodes. The electrodes, which can form a single QD, were introduced on the top surfaces of two-dimensional PhC nanocavities with a position accuracy of a few tens of nanometers. Despite the electrodes, a resonant mode was confirmed for the PhC nanocavities through micro-photoluminescence spectroscopy. This work marks a crucial step towards optical coupling between gate-defined QDs and PhC nanocavities. (C) 2020 The Japan Society of Applied Physics
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Numerical analysis of photon absorption of gate-defined quantum dots embedded in asymmetric bull's-eye optical cavities
    Ji, Sangmin
    Iwamoto, Satoshi
    OPTICS CONTINUUM, 2023, 2 (11): : 2270 - 2279
  • [42] Gate-defined quantum confinement in suspended bilayer graphene
    Allen, M. T.
    Martin, J.
    Yacoby, A.
    NATURE COMMUNICATIONS, 2012, 3
  • [43] Gate-defined quantum confinement in suspended bilayer graphene
    M. T. Allen
    J. Martin
    A. Yacoby
    Nature Communications, 3
  • [44] Gate-Defined Graphene Quantum Point Contact in the Quantum Hall Regime
    Nakaharai, S.
    Williams, J. R.
    Marcus, C. M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (03)
  • [45] On Noise-Sensitive Automatic Tuning of Gate-Defined Sensor Dots
    Hader F.
    Vogelbruch J.
    Humpohl S.
    Hangleiter T.
    Eguzo C.
    Heinen S.
    Meyer S.
    Van Waasen S.
    IEEE Transactions on Quantum Engineering, 2023, 4
  • [46] Gate-Defined Electron-Hole Double Dots in Bilayer Graphene
    Banszerus, L.
    Frohn, B.
    Epping, A.
    Neumaier, D.
    Watanabe, K.
    Taniguchi, T.
    Stampfer, C.
    NANO LETTERS, 2018, 18 (08) : 4785 - 4790
  • [47] Resonant scattering in graphene with a gate-defined chaotic quantum dot
    Schneider, Martin
    Brouwer, Piet W.
    PHYSICAL REVIEW B, 2011, 84 (11):
  • [48] Large Nuclear Spin Polarization in Gate-Defined Quantum Dots Using a Single-Domain Nanomagnet
    Petersen, Gunnar
    Hoffmann, Eric A.
    Schuh, Dieter
    Wegscheider, Werner
    Giedke, Geza
    Ludwig, Stefan
    PHYSICAL REVIEW LETTERS, 2013, 110 (17)
  • [49] Edgeless and purely gate-defined nanostructures in InAs quantum wells
    Mittag, Christopher
    Karalic, Matija
    Lei, Zijin
    Tschirky, Thomas
    Wegscheider, Werner
    Ihn, Thomas
    Ensslin, Klaus
    APPLIED PHYSICS LETTERS, 2018, 113 (26)
  • [50] Two-Photon Excitation and Emission in Quantum Dots coupled to Photonic Crystal Nanocavities
    Lin, Ziliang
    Vuckovic, Jelena
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2313 - 2314