Photometric classification and redshift estimation of LSST Supernovae

被引:16
|
作者
Dai, Mi [1 ]
Kuhlmann, Steve [2 ]
Wang, Yun [3 ]
Kovacs, Eve [2 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA
[3] CALTECH, IPAC, Mail Code 314-6,1200 East Calif Blvd, Pasadena, CA 91125 USA
关键词
supernovae: general; cosmology: observations; IA SUPERNOVAE;
D O I
10.1093/mnras/sty965
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopically following up all the SNe. We investigate the performance of an SN classifier that uses SN colours to classify LSST SNe with the Random Forest classification algorithm. Our classifier results in an area-under-the-curve of 0.98 which represents excellent classification. We are able to obtain a photometric SN sample containing 99 per cent SNe Ia by choosing a probability threshold. We estimate the photometric redshifts (photo-z) of SNe in our sample by fitting the SN light curves using the SALT2 model with nested sampling. We obtain a mean bias (< z(phot) - z(spec)>) of 0.012 with sigma (z(phot)-z(spec)/1+z(spec)) = 0.0294 without using a host-galaxy photo-z prior, and a mean bias (< z(phot) - z(spec)>) of 0.0017 with sigma (z(phot)-z(spec)/1+z(spec)) = 0.0116 using a host-galaxy photo-z prior. Assuming a flat Lambda CDM model with Omega(m) = 0.3, we obtain Omega(m) of 0.305 +/- 0.008 (statistical errors only), using the simulated LSST sample of photometric SNe Ia (with intrinsic scatter sigma(int) = 0.11) derived using our methodology without using host-galaxy photo-z prior. Our method will help boost the power of SNe from the LSST as cosmological probes.
引用
收藏
页码:4142 / 4151
页数:10
相关论文
共 50 条
  • [1] Improving Photometric Redshift Estimation for Cosmology with LSST Using Bayesian Neural Networks
    Jones, Evan
    Do, Tuan
    Boscoe, Bernie
    Singal, Jack
    Wan, Yujie
    Nguyen, Zooey
    [J]. ASTROPHYSICAL JOURNAL, 2024, 964 (02):
  • [2] Photometric supernovae redshift systematics requirements
    Linder, Eric, V
    Mitra, Ayan
    [J]. PHYSICAL REVIEW D, 2019, 100 (04)
  • [3] CPz: Classification-aided photometric-redshift estimation
    Fotopoulou, S.
    Paltani, S.
    [J]. ASTRONOMY & ASTROPHYSICS, 2018, 619
  • [4] Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST)
    Schmidt, S. J.
    Malz, A., I
    Soo, J. Y. H.
    Almosallam, I. A.
    Brescia, M.
    Cavuoti, S.
    Cohen-Tanugi, J.
    Connolly, A. J.
    DeRose, J.
    Freeman, P. E.
    Graham, M. L.
    Iyer, K. G.
    Jarvis, M. J.
    Kalmbach, J. B.
    Kovacs, E.
    Lee, A. B.
    Longo, G.
    Morrison, C. B.
    Newman, J. A.
    Nourbakhsh, E.
    Nuss, E.
    Pospisil, T.
    Tranin, H.
    Wechsler, R. H.
    Zhou, R.
    Izbicki, R.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 499 (02) : 1587 - 1606
  • [5] Photometric identification of Type Ia supernovae at moderate redshift
    Johnson, Benjamin D.
    Crotts, Arlin P. S.
    [J]. ASTRONOMICAL JOURNAL, 2006, 132 (02): : 756 - 768
  • [6] Bayesian photometric redshift estimation
    Benítez, N
    [J]. ASTROPHYSICAL JOURNAL, 2000, 536 (02): : 571 - 583
  • [7] Cooperative photometric redshift estimation
    Cavuoti, S.
    Tortora, C.
    Brescia, M.
    Longo, G.
    Radovich, M.
    Napolitano, N. R.
    Amaro, V.
    Vellucci, C.
    [J]. ASTROINFORMATICS, 2017, 12 (S325): : 166 - 172
  • [8] Data-driven photometric redshift estimation from type Ia supernovae light curves
    de Oliveira, Felipe M. F.
    dos Santos, Marcelo Vargas
    Reis, Ribamar R. R.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 518 (02) : 2385 - 2397
  • [9] Overconfidence in photometric redshift estimation
    Wittman, David
    Bhaskar, Ramya
    Tobin, Ryan
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 457 (04) : 4005 - 4011
  • [10] Dictionary Learning for Photometric Redshift Estimation
    Frontera-Pons, Joana
    Sureau, Florent
    Moraes, Bruno
    Bobin, Jerome
    Abdalla, Filipe B.
    Starck, Jean-Luc
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1740 - 1744