Photometric classification and redshift estimation of LSST Supernovae

被引:17
|
作者
Dai, Mi [1 ]
Kuhlmann, Steve [2 ]
Wang, Yun [3 ]
Kovacs, Eve [2 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA
[3] CALTECH, IPAC, Mail Code 314-6,1200 East Calif Blvd, Pasadena, CA 91125 USA
关键词
supernovae: general; cosmology: observations; IA SUPERNOVAE;
D O I
10.1093/mnras/sty965
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopically following up all the SNe. We investigate the performance of an SN classifier that uses SN colours to classify LSST SNe with the Random Forest classification algorithm. Our classifier results in an area-under-the-curve of 0.98 which represents excellent classification. We are able to obtain a photometric SN sample containing 99 per cent SNe Ia by choosing a probability threshold. We estimate the photometric redshifts (photo-z) of SNe in our sample by fitting the SN light curves using the SALT2 model with nested sampling. We obtain a mean bias (< z(phot) - z(spec)>) of 0.012 with sigma (z(phot)-z(spec)/1+z(spec)) = 0.0294 without using a host-galaxy photo-z prior, and a mean bias (< z(phot) - z(spec)>) of 0.0017 with sigma (z(phot)-z(spec)/1+z(spec)) = 0.0116 using a host-galaxy photo-z prior. Assuming a flat Lambda CDM model with Omega(m) = 0.3, we obtain Omega(m) of 0.305 +/- 0.008 (statistical errors only), using the simulated LSST sample of photometric SNe Ia (with intrinsic scatter sigma(int) = 0.11) derived using our methodology without using host-galaxy photo-z prior. Our method will help boost the power of SNe from the LSST as cosmological probes.
引用
收藏
页码:4142 / 4151
页数:10
相关论文
共 50 条
  • [41] Photometric redshift estimation based on data mining with PhotoRApToR
    S. Cavuoti
    M. Brescia
    V. De Stefano
    G. Longo
    [J]. Experimental Astronomy, 2015, 39 : 45 - 71
  • [42] Photometric redshift estimation based on data mining with PhotoRApToR
    Cavuoti, S.
    Brescia, M.
    De Stefano, V.
    Longo, G.
    [J]. EXPERIMENTAL ASTRONOMY, 2015, 39 (01) : 45 - 71
  • [43] Hierarchical Matching and Regression with Application to Photometric Redshift Estimation
    Murtagh, Fionn
    [J]. ASTROINFORMATICS, 2017, 12 (S325): : 145 - 155
  • [44] Photometric redshift estimation with a convolutional neural network: NetZ
    Schuldt, S.
    Suyu, S. H.
    Canameras, R.
    Taubenberger, S.
    Meinhard, T.
    Leal-Taixe, L.
    Hsieh, B. C.
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 651
  • [45] Photometric redshift estimation using spectral connectivity analysis
    Freeman, P. E.
    Newman, J. A.
    Lee, A. B.
    Richards, J. W.
    Schafer, C. M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 398 (04) : 2012 - 2021
  • [46] Fine-grained photometric classification using multi-model fusion method with redshift estimation
    Cheng, Peng
    Liu, Zhihui
    Zeraatgri, Fatemeh Zahra
    Mei, Liquan
    [J]. JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2024, 43 : 198 - 208
  • [47] Considerations for Optimizing the Photometric Classification of Supernovae from the Rubin Observatory
    Alves, Catarina S.
    Peiris, Hiranya, V
    Lochner, Michelle
    McEwen, Jason D.
    Allam, Tarek, Jr.
    Biswas, Rahul
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2022, 258 (02):
  • [48] PHOTOMETRIC CLASSIFICATION AND BASIC CHARACTERISTICS OF TYPE-I SUPERNOVAE
    PSKOVSKII, YP
    [J]. ASTRONOMICHESKII ZHURNAL, 1984, 61 (06): : 1125 - 1136
  • [49] Impact of Rubin Observatory Cadence Choices on Supernovae Photometric Classification
    Alves, Catarina V.
    Peiris, Hiranya
    Lochner, Michelle D.
    McEwen, Jason
    Kessler, Richard
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2023, 265 (02):
  • [50] Tests of Catastrophic Outlier Prediction in Empirical Photometric Redshift Estimation with Redshift Probability Distributions
    Jones, E.
    Singal, J.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2020, 132 (1008)