Data-driven photometric redshift estimation from type Ia supernovae light curves

被引:2
|
作者
de Oliveira, Felipe M. F. [1 ,2 ]
dos Santos, Marcelo Vargas [3 ,4 ]
Reis, Ribamar R. R. [5 ,6 ]
机构
[1] Hurb Technol, BR-22776090 Rio De Janeiro, RJ, Brazil
[2] CEA, IRFU, Gif Sur Yvette, France
[3] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, Paraiba, Brazil
[4] Univ Sao Paulo, Inst Fis, R Matao 1371 Butanta, BR-0550809 Sao Paulo, SP, Brazil
[5] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil
[6] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, RJ, Brazil
关键词
techniques: photometric; software: data analysis; cosmology: miscellaneous; cosmology: observations; transients: supernovae; CLASSIFICATION; SEARCH;
D O I
10.1093/mnras/stac3202
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Redshift measurement has always been a constant need in modern astronomy and cosmology. And as new surveys have been providing an immense amount of data on astronomical objects, the need to process such data automatically proves to be increasingly necessary. In this article, we use simulated data from the Dark Energy Survey, and from a pipeline originally created to classify supernovae, we developed a linear regression algorithm optimized through novel automated machine learning (AutoML) frameworks achieving an error score better than ordinary data pre-processing methods when compared with other modern algorithms (such as xgboost). Numerically, the photometric prediction RMSE of type Ia supernovae events was reduced from 0.16 to 0.09 and the RMSE of all supernovae types decreased from 0.20 to 0.14. Our pipeline consists of four steps: through spectroscopic data points we interpolate the light curve using Gaussian process fitting algorithm, then using a wavelet transform we extract the most important features of such curves; in sequence we reduce the dimensionality of such features through principal component analysis, and in the end we applied super learning techniques (stacked ensemble methods) through an AutoML framework dedicated to optimize the parameters of several different machine learning models, better resolving the problem. As a final check, we obtained probability distribution functions (PDFs) using Gaussian kernel density estimations through the predictions of more than 50 models trained and optimized by AutoML. Those PDFs were calculated to replicate the original curves that used SALT2 model, a model used for the simulation of the raw data itself.
引用
收藏
页码:2385 / 2397
页数:13
相关论文
共 50 条
  • [1] COMPARING THE LIGHT CURVES OF SIMULATED TYPE Ia SUPERNOVAE WITH OBSERVATIONS USING DATA-DRIVEN MODELS
    Diemer, Benedikt
    Kessler, Richard
    Graziani, Carlo
    Jordan, George C.
    Lamb, Donald Q.
    Long, Min
    van Rossum, Daniel R.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 773 (02):
  • [2] Light curves of five type Ia supernovae at intermediate redshift
    Amanullah, R.
    Stanishev, V.
    Goobar, A.
    Schahmaneche, K.
    Astier, P.
    Balland, C.
    Ellis, R. S.
    Fabbro, S.
    Hardin, D.
    Hook, I. M.
    Irwin, M. J.
    McMahon, R. G.
    Mendez, J. M.
    Mouchet, M.
    Pain, R.
    Ruiz-Lapuente, P.
    Walton, N. A.
    [J]. ASTRONOMY & ASTROPHYSICS, 2008, 486 (02) : 375 - U29
  • [3] Photometric data-driven classification of Type Ia supernovae in the open Supernova Catalog
    Dobryakov, S.
    Malanchev, K.
    Derkach, D.
    Hushchyn, M.
    [J]. ASTRONOMY AND COMPUTING, 2021, 35
  • [4] Photometric identification of Type Ia supernovae at moderate redshift
    Johnson, Benjamin D.
    Crotts, Arlin P. S.
    [J]. ASTRONOMICAL JOURNAL, 2006, 132 (02): : 756 - 768
  • [5] Light Curves of Type Ia Supernovae
    Lyutykh, A. V.
    Pruzhinskaya, M. V.
    Blinnikov, S. I.
    [J]. ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2021, 47 (01): : 1 - 11
  • [6] Light Curves of Type Ia Supernovae
    A. V. Lyutykh
    M. V. Pruzhinskaya
    S. I. Blinnikov
    [J]. Astronomy Letters, 2021, 47 : 1 - 11
  • [7] A model-independent photometric redshift estimator for type Ia supernovae
    Wang, Yun
    [J]. ASTROPHYSICAL JOURNAL, 2007, 654 (02): : L123 - L125
  • [8] The morphology of type Ia supernovae light curves
    Hamuy, M
    Phillips, MM
    Suntzeff, NB
    Schommer, RA
    Maza, J
    Smith, RC
    Lira, P
    Aviles, R
    [J]. ASTRONOMICAL JOURNAL, 1996, 112 (06): : 2438 - 2447
  • [9] Infrared light curves of type Ia supernovae
    Phillips, MM
    Krisciunas, K
    Suntzeff, NB
    Roth, M
    Germany, L
    Candia, P
    Gonzalez, S
    Hamuy, M
    Freedman, WL
    Persson, SE
    Nugent, PE
    Aldering, G
    Conley, A
    [J]. FROM TWILIGHT TO HIGHLIGHT: THE PHYSICS OF SUPERNOVAE, 2003, : 193 - 199
  • [10] On the homogeneity of type IA supernovae light curves
    Mayer, FJ
    Reitz, JR
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2002, 282 (02) : 439 - 445