A capacity scaling algorithm for convex cost submodular flows

被引:24
|
作者
Iwata, S
机构
[1] Res. Inst. for Mathematical Sciences, Kyoto University
关键词
submodular flow; polynomial algorithm; convex optimization;
D O I
10.1007/BF02614442
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a scaling scheme for submodular functions. A small but strictly submodular function is added before scaling so that the resulting functions should be submodular. This scaling scheme leads to a weakly polynomial algorithm to solve minimum cost integral submodular flow problems with separable convex cost functions, provided that an oracle for exchange capacities is available.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 50 条
  • [41] DUALITY FOR BALANCED SUBMODULAR FLOWS
    ZIMMERMANN, U
    DISCRETE APPLIED MATHEMATICS, 1986, 15 (2-3) : 365 - 376
  • [43] Consistent Online Optimization: Convex and Submodular
    Karimi, Mohammad Reza
    Krause, Andreas
    Lattanzi, Silvio
    Vassilvitskii, Sergei
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [44] Greedy approximations for minimum submodular cover with submodular cost
    Wan, Peng-Jun
    Du, Ding-Zhu
    Pardalos, Panos
    Wu, Weili
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (02) : 463 - 474
  • [45] FINDING MINIMUM-COST FLOWS BY DOUBLE SCALING
    AHUJA, RK
    GOLDBERG, AV
    ORLIN, JB
    TARJAN, RE
    MATHEMATICAL PROGRAMMING, 1992, 53 (03) : 243 - 266
  • [46] Greedy approximations for minimum submodular cover with submodular cost
    Peng-Jun Wan
    Ding-Zhu Du
    Panos Pardalos
    Weili Wu
    Computational Optimization and Applications, 2010, 45 : 463 - 474
  • [47] SOLVING INTEGER MINIMUM COST FLOWS WITH SEPARABLE CONVEX COST OBJECTIVE POLYNOMIALLY
    MINOUX, M
    MATHEMATICAL PROGRAMMING STUDY, 1986, 26 : 237 - 239
  • [48] CAPACITY EXPANSION IN CONVEX COST NETWORKS WITH UNCERTAIN DEMAND
    LEONDES, CT
    NANDI, RK
    OPERATIONS RESEARCH, 1975, 23 (06) : 1172 - 1178
  • [49] A lowest level rule push-relabel algorithm for submodular flows and matroid optimization
    Olariu, Emanuel F.
    Frasinaru, Cristian
    16TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2014), 2014, : 97 - 102
  • [50] A RENEWAL THEOREM FOR MINIMUM CONVEX-COST FLOWS IN NETWORKS
    ONAGA, K
    KAKUSHO, O
    KATO, K
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1969, 52 (03): : 31 - &