A capacity scaling algorithm for convex cost submodular flows

被引:24
|
作者
Iwata, S
机构
[1] Res. Inst. for Mathematical Sciences, Kyoto University
关键词
submodular flow; polynomial algorithm; convex optimization;
D O I
10.1007/BF02614442
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a scaling scheme for submodular functions. A small but strictly submodular function is added before scaling so that the resulting functions should be submodular. This scaling scheme leads to a weakly polynomial algorithm to solve minimum cost integral submodular flow problems with separable convex cost functions, provided that an oracle for exchange capacities is available.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 50 条
  • [21] On minimum submodular cover with submodular cost
    Hongjie Du
    Weili Wu
    Wonjun Lee
    Qinghai Liu
    Zhao Zhang
    Ding-Zhu Du
    Journal of Global Optimization, 2011, 50 : 229 - 234
  • [22] PROPERTIES OF MINIMUM CONVEX-COST FLOWS
    ONAGA, K
    KAKUSHO, O
    KATO, K
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1969, 52 (02): : 1 - &
  • [23] MINIMUM CONVEX COST DYNAMIC NETWORK FLOWS
    ORLIN, JB
    MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (02) : 190 - 207
  • [24] On minimum submodular cover with submodular cost
    Du, Hongjie
    Wu, Weili
    Lee, Wonjun
    Liu, Qinghai
    Zhang, Zhao
    Du, Ding-Zhu
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 50 (02) : 229 - 234
  • [25] NEGATIVE CIRCUITS FOR FLOWS AND SUBMODULAR FLOWS
    ZIMMERMANN, U
    DISCRETE APPLIED MATHEMATICS, 1992, 36 (02) : 179 - 189
  • [26] Improved Parallel Algorithm for Minimum Cost Submodular Cover Problem
    Ran, Yingli
    Zhang, Zhao
    Tang, Shaojie
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178
  • [27] A specialized interior-point algorithm for huge minimum convex cost flows in bipartite networks
    Castro, Jordi
    Nasini, Stefano
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (03) : 857 - 869
  • [28] Greedy Δ-Approximation Algorithm for Covering with Arbitrary Constraints and Submodular Cost
    Christos Koufogiannakis
    Neal E. Young
    Algorithmica, 2013, 66 : 113 - 152
  • [29] Greedy Δ-Approximation Algorithm for Covering with Arbitrary Constraints and Submodular Cost
    Koufogiannakis, Christos
    Young, Neal E.
    ALGORITHMICA, 2013, 66 (01) : 113 - 152
  • [30] A STRONGLY POLYNOMIAL ALGORITHM FOR MINIMUM COST SUBMODULAR FLOW PROBLEMS
    FUJISHIGE, S
    ROCK, H
    ZIMMERMANN, U
    MATHEMATICS OF OPERATIONS RESEARCH, 1989, 14 (01) : 60 - 69