ON THE STRUCTURE OF THE AFFINE ASYMPTOTIC HECKE ALGEBRAS

被引:0
|
作者
Bezrukavnikov, Roman [1 ]
Dawydiak, Stefan [2 ]
Dobrovolska, Galyna [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[3] Ariel Univ, IL-40700 Ariel, Israel
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
REPRESENTATIONS; CELLS; RINGS;
D O I
10.1007/s00031-022-09790-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
According to a conjecture of Lusztig, the asymptotic affine Hecke algebra should admit a description in terms of the Grothedieck group of sheaves on the square of a finite set equivariant under the action of the centralizer of a nilpotent element in the reductive group. A weaker form of this statement, allowing for possible central extensions of stabilizers of that action, has been proved by the first named author with Ostrik. In the present paper, we describe an example showing that nontrivial central extensions do arise, thus the above weaker statement is optimal. We also show that Lusztig's homomorphism from the affine Hecke algebra to the asymptotic affine Hecke algebra induces an isomorphism on cocenters and discuss the relation of the above central extensions to the structure of the cocenter.
引用
收藏
页码:1059 / 1079
页数:21
相关论文
共 50 条