Quantum affine gln via Hecke algebras

被引:26
|
作者
Du, Jie [1 ]
Fu, Qiang [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
The quantum loop algebra of gl(n); Affine quantum Schur algebras; Ringel-Hall algebras; HALL ALGEBRAS;
D O I
10.1016/j.aim.2015.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quantum loop algebra of gl(n), is the affine analogue of quantum gl(n). In the seminal work [1], Beilinson-Lusztig-MacPherson gave a beautiful realisation for quantum gl(n), via a geometric setting of quantum Schur algebras. More precisely, they used quantum Schur algebras to construct a certain algebra U in [1, 5.4] and proved in [1, 5.7] that U is isomorphic to quantum gl(n). We will present in this paper a full generalisation of BLM's realisation to the affine case. Though the realisation of the quantum loop algebra of gln is motivated by the work [1] for quantum gl(n), our approach is purely algebraic and combinatorial, independent of the geometric method for quantum gl(n). As an application, we discover a presentation of the Ringel-Hall algebra of a cyclic quiver by semisimple generators and their multiplications by the defining basis elements. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:23 / 46
页数:24
相关论文
共 50 条
  • [1] Quantum affine algebras and affine Hecke algebras
    Chari, V
    Pressley, A
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1996, 174 (02) : 295 - 326
  • [2] AFFINE QUANTUM SCHUR ALGEBRAS AND AFFINE HECKE ALGEBRAS
    Fu, Qiang
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2014, 270 (02) : 351 - 366
  • [3] Affine Hecke Algebras via DAHA
    Cherednik I.
    [J]. Arnold Mathematical Journal, 2018, 4 (1) : 69 - 85
  • [4] Affine Hecke Algebras and Quantum Symmetric Pairs
    Fan, Zhaobing
    Lai, Chun-Ju
    Li, Yiqiang
    Luo, Li
    Wang, Weiqiang
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 281 (1386) : 1 - 92
  • [5] Affine nil-Hecke algebras and quantum cohomology
    Gonzalez, Eduardo
    Mak, Cheuk Yu
    Pomerleano, Dan
    [J]. ADVANCES IN MATHEMATICS, 2023, 415
  • [6] Double affine Hecke algebras and elliptic Hecke algebras
    Takebayashi, T
    [J]. JOURNAL OF ALGEBRA, 2002, 253 (02) : 314 - 349
  • [7] Hecke algebras at roots of unity and crystal bases of quantum affine algebras
    Lascoux, A
    Leclerc, B
    Thibon, JY
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (01) : 205 - 263
  • [8] Affine Hecke algebras, cyclotomic Hecke algebras and Clifford theory
    Ram, A
    Ramagge, J
    [J]. TRIBUTE TO C.S. SESHADRI: A COLLECTION OF ARTICLES ON GEOMETRY AND REPRESENTATION THEORY, 2003, : 428 - 466
  • [9] Double affine Hecke algebras and Hecke algebras associated with quivers
    Varagnolo, Michela
    Vasserot, Eric
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 191 - 211
  • [10] Modified affine Hecke algebras and quiver Hecke algebras of type A
    Hu, Jun
    Li, Fang
    [J]. JOURNAL OF ALGEBRA, 2020, 541 : 219 - 269