Pendulum beams: optical modes that simulate the quantum pendulum

被引:1
|
作者
Galvez, E. J. [1 ]
Auccapuclla, F. J. [1 ]
Qin, Y. [1 ]
Wittler, K. L. [1 ]
Freedman, J. M. [1 ]
机构
[1] Colgate Univ, Dept Phys & Astron, Hamilton, NY 13346 USA
关键词
pendulum beams; Mathieu beams; non-diffracting beams; quantum pendulum;
D O I
10.1088/2040-8986/abe393
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The wave equation of electromagnetism, the Helmholtz equation, has the same form as the Schrodinger equation, and so optical waves can be used to study quantum mechanical problems. The electromagnetic wave solutions for non-diffracting beams lead to the two-dimensional Helmholtz equation. When expressed in elliptical coordinates the solution of the angular part is the same as the Schrodinger equation for the simple pendulum. The resulting optical eigenmodes, Mathieu modes, have an optical Fourier transform with a spatial intensity distribution that is proportional to the quantum mechanical probability for the pendulum. Comparison of Fourier intensities of eigenmodes are in excellent agreement with calculated quantum mechanical probabilities of pendulum stationary states. We further investigate wave-packet superpositions of a few modes and show that they mimic the libration and the nonlinear rotation of the classical pendulum, including revivals due to the quantized nature of superpositions. The ability to 'dial a wavefunction' with the optical modes allows the exploration of important aspects of quantum wave-mechanics and the pendulum that may not be possible with other physical systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The physical pendulum in quantum mechanics
    Condon, EU
    PHYSICAL REVIEW, 1928, 31 (05): : 0891 - 0894
  • [22] Quantum States of the Kapitza Pendulum
    Golovinski, P. A.
    Dubinkin, V. A.
    RUSSIAN PHYSICS JOURNAL, 2022, 65 (01) : 21 - 32
  • [23] Evolution operator for a quantum pendulum
    Sergeev, SM
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (01) : 28 - 32
  • [24] Evolution Operator for a Quantum Pendulum
    S. M. Sergeev
    Theoretical and Mathematical Physics, 2004, 138 : 28 - 32
  • [25] THE QUANTUM PENDULUM IN THE WKBJ APPROXIMATION
    KESARWANI, RN
    VARSHNI, YP
    JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (01) : 92 - 95
  • [26] Quantum States of the Kapitza Pendulum
    P. A. Golovinski
    V. A. Dubinkin
    Russian Physics Journal, 2022, 65 : 21 - 32
  • [27] MONODROMY IN THE QUANTUM SPHERICAL PENDULUM
    GUILLEMIN, V
    URIBE, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (04) : 563 - 574
  • [28] Quantum fluctuations in the chirped pendulum
    Murch, K. W.
    Vijay, R.
    Barth, I.
    Naaman, O.
    Aumentado, J.
    Friedland, L.
    Siddiqi, I.
    NATURE PHYSICS, 2011, 7 (02) : 105 - 108
  • [29] The quantum pendulum: Small and large
    Baker, GL
    Blackburn, JA
    Smith, HJT
    AMERICAN JOURNAL OF PHYSICS, 2002, 70 (05) : 525 - 531
  • [30] Classical and Quantum Spherical Pendulum
    Cushman, Richard
    Sniatycki, Jedrzej
    SYMMETRY-BASEL, 2022, 14 (03):