Pendulum beams: optical modes that simulate the quantum pendulum

被引:1
|
作者
Galvez, E. J. [1 ]
Auccapuclla, F. J. [1 ]
Qin, Y. [1 ]
Wittler, K. L. [1 ]
Freedman, J. M. [1 ]
机构
[1] Colgate Univ, Dept Phys & Astron, Hamilton, NY 13346 USA
关键词
pendulum beams; Mathieu beams; non-diffracting beams; quantum pendulum;
D O I
10.1088/2040-8986/abe393
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The wave equation of electromagnetism, the Helmholtz equation, has the same form as the Schrodinger equation, and so optical waves can be used to study quantum mechanical problems. The electromagnetic wave solutions for non-diffracting beams lead to the two-dimensional Helmholtz equation. When expressed in elliptical coordinates the solution of the angular part is the same as the Schrodinger equation for the simple pendulum. The resulting optical eigenmodes, Mathieu modes, have an optical Fourier transform with a spatial intensity distribution that is proportional to the quantum mechanical probability for the pendulum. Comparison of Fourier intensities of eigenmodes are in excellent agreement with calculated quantum mechanical probabilities of pendulum stationary states. We further investigate wave-packet superpositions of a few modes and show that they mimic the libration and the nonlinear rotation of the classical pendulum, including revivals due to the quantized nature of superpositions. The ability to 'dial a wavefunction' with the optical modes allows the exploration of important aspects of quantum wave-mechanics and the pendulum that may not be possible with other physical systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Nonlinear normal modes in pendulum systems
    Klimenko, A. A.
    Mikhlin, Y. V.
    Awrejcewicz, J.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 797 - 813
  • [12] NORMAL MODES OF VIBRATION - PENDULUM DEMONSTRATION
    DAVIS, DR
    JOURNAL OF CHEMICAL EDUCATION, 1973, 50 (03) : 180 - 180
  • [13] Stabilization of rotational modes for the Furuta pendulum
    Shiriaev, A
    Paramonov, L
    Sorensen, A
    Robertsson, A
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 813 - 818
  • [14] Pendulum-type light beams
    Jia, Junhui
    Lin, Haolin
    Liao, Yixuan
    LI, Zhen
    Chen, Zhenqiang
    Fu, Shenhe
    OPTICA, 2023, 10 (01): : 90 - 96
  • [15] Nonlinear normal modes in pendulum systems
    A. A. Klimenko
    Y. V. Mikhlin
    J. Awrejcewicz
    Nonlinear Dynamics, 2012, 70 : 797 - 813
  • [16] On stabilization of rotational modes of an inverted pendulum
    Shiriaev, AS
    Friesel, A
    Perram, J
    Pogromsky, A
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 5047 - 5052
  • [17] Rotational modes of a double conical pendulum
    Cross, Rod
    EUROPEAN JOURNAL OF PHYSICS, 2023, 44 (02)
  • [18] Quantum dynamics of a plane pendulum
    Leibscher, Monika
    Schmidt, Burkhard
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [19] Atom optics quantum pendulum
    Muhammad Ayub
    Khalid Naseer
    Manzoor Ali
    Farhan Saif
    Journal of Russian Laser Research, 2009, 30 : 205 - 223
  • [20] Quantum fluctuations in the chirped pendulum
    Murch K.W.
    Vijay R.
    Barth I.
    Naaman O.
    Aumentado J.
    Friedland L.
    Siddiqi I.
    Nature Physics, 2011, 7 (2) : 105 - 108