Pendulum beams: optical modes that simulate the quantum pendulum

被引:1
|
作者
Galvez, E. J. [1 ]
Auccapuclla, F. J. [1 ]
Qin, Y. [1 ]
Wittler, K. L. [1 ]
Freedman, J. M. [1 ]
机构
[1] Colgate Univ, Dept Phys & Astron, Hamilton, NY 13346 USA
关键词
pendulum beams; Mathieu beams; non-diffracting beams; quantum pendulum;
D O I
10.1088/2040-8986/abe393
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The wave equation of electromagnetism, the Helmholtz equation, has the same form as the Schrodinger equation, and so optical waves can be used to study quantum mechanical problems. The electromagnetic wave solutions for non-diffracting beams lead to the two-dimensional Helmholtz equation. When expressed in elliptical coordinates the solution of the angular part is the same as the Schrodinger equation for the simple pendulum. The resulting optical eigenmodes, Mathieu modes, have an optical Fourier transform with a spatial intensity distribution that is proportional to the quantum mechanical probability for the pendulum. Comparison of Fourier intensities of eigenmodes are in excellent agreement with calculated quantum mechanical probabilities of pendulum stationary states. We further investigate wave-packet superpositions of a few modes and show that they mimic the libration and the nonlinear rotation of the classical pendulum, including revivals due to the quantized nature of superpositions. The ability to 'dial a wavefunction' with the optical modes allows the exploration of important aspects of quantum wave-mechanics and the pendulum that may not be possible with other physical systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Pendulum Beams: A Window into the Quantum Pendulum
    Galvez, Enrique J.
    Auccapuclla, Fabio J.
    Wittler, Kristina L.
    Qin, Yingsi
    COMPLEX LIGHT AND OPTICAL FORCES XIII, 2019, 10935
  • [2] (2D+1) Pendulum Beams: Non-diffracting Optical Spatial Wavepackets that Simulate Quantum Pendulum Dynamics
    Nguyen, Thao P.
    Rodriguez-Fajardo, Valeria
    Galvez, Enrique J.
    COMPLEX LIGHT AND OPTICAL FORCES XVI, 2022, 12017
  • [3] THE QUANTUM PENDULUM
    AQUINO, N
    PINA, E
    REVISTA MEXICANA DE FISICA, 1993, 39 (06) : 945 - 956
  • [4] QUANTUM PENDULUM
    ALDROVANDI, R
    FERREIRA, PL
    AMERICAN JOURNAL OF PHYSICS, 1980, 48 (08) : 660 - 664
  • [5] Coupled modes of the torsion pendulum
    Fan, Xiang-Dong
    Liu, Qi
    Liu, Lin-Xia
    Milyukov, Vadim
    Luo, Jun
    PHYSICS LETTERS A, 2008, 372 (05) : 547 - 552
  • [6] THE DISCRETE QUANTUM PENDULUM
    BOBENKO, A
    KUTZ, N
    PINKALL, U
    PHYSICS LETTERS A, 1993, 177 (06) : 399 - 404
  • [7] Quantum Kapitza pendulum
    Golovinski, P. A.
    Dubinkin, V. A.
    ADVANCES IN 3OM: OPTO-MECHATRONICS, OPTO-MECHANICS, AND OPTICAL METROLOGY, 2022, 12170
  • [8] Discrete quantum pendulum
    Bobenko, A.
    Kutz, N.
    Pinkall, U.
    Physica D: Nonlinear Phenomena, 1993, 66 (3-4)
  • [9] ON THE SPECTRUM OF THE QUANTUM PENDULUM
    KUTZ, N
    PHYSICS LETTERS A, 1994, 187 (5-6) : 365 - 372
  • [10] Optical Kapitza Pendulum
    Jones, Philip H.
    Smart, Thomas J.
    Richards, Christopher J.
    Cubero, David
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION XIII, 2016, 9922