Sequential Monte Carlo for Model Predictive Control

被引:0
|
作者
Kantas, N. [1 ]
Maciejowski, J. M. [1 ]
Lecchini-Visintini, A. [2 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Leicester, Dept Engn, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Stochastic optimisation; Stochastic MPC; Sequential Monte Carlo; PARTICLE METHODS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes the use of Sequential Monte Carlo (SMC) as the computational engine for general (non-convex) stochastic Model Predictive Control (MPC) problems. It shows how SMC methods can be used to find global optimisers of non-convex problems, in particular for solving open-loop stochastic control problems that arise at the core of the usual receding-horizon implementation of MPC. This allows the MPC methodology to be extended to nonlinear non-Gaussian problems. We illustrate the effectiveness of the approach by means of numerical examples related to coordination of moving agents.
引用
收藏
页码:263 / +
页数:3
相关论文
共 50 条
  • [31] Sequential Markov Chain Monte Carlo (MCMC) model discrimination
    Masoumi, Samira
    Duever, Thomas A.
    Reilly, Park M.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2013, 91 (05): : 862 - 869
  • [32] Sequential Monte Carlo for model selection and estimation of neural networks
    Andrieu, C
    deFreitas, N
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3410 - 3413
  • [33] Adaptive Tuning of Hamiltonian Monte Carlo Within Sequential Monte Carlo
    Buchholz, Alexander
    Chopin, Nicolas
    Jacob, Pierre E.
    BAYESIAN ANALYSIS, 2021, 16 (03): : 745 - 771
  • [34] On sequential Monte Carlo, partial rejection control and approximate Bayesian computation
    Peters, G. W.
    Fan, Y.
    Sisson, S. A.
    STATISTICS AND COMPUTING, 2012, 22 (06) : 1209 - 1222
  • [35] On sequential Monte Carlo, partial rejection control and approximate Bayesian computation
    G. W. Peters
    Y. Fan
    S. A. Sisson
    Statistics and Computing, 2012, 22 : 1209 - 1222
  • [36] Sequential noise compensation by sequential Monte Carlo method
    Yao, K
    Nakamura, S
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1213 - 1220
  • [37] Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals
    South, L. F.
    Pettitt, A. N.
    Drovandi, C. C.
    BAYESIAN ANALYSIS, 2019, 14 (03): : 753 - 776
  • [38] Sequential Monte Carlo simulated annealing
    Zhou, Enlu
    Chen, Xi
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 55 (01) : 101 - 124
  • [39] Lookahead Strategies for Sequential Monte Carlo
    Lin, Ming
    Chen, Rong
    Liu, Jun S.
    STATISTICAL SCIENCE, 2013, 28 (01) : 69 - 94
  • [40] Sequential Monte Carlo Instant Radiosity
    Hedman, Peter
    Karras, Tero
    Lehtinen, Jaakko
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (05) : 1442 - 1453