Sequential Monte Carlo for Model Predictive Control

被引:0
|
作者
Kantas, N. [1 ]
Maciejowski, J. M. [1 ]
Lecchini-Visintini, A. [2 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Leicester, Dept Engn, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Stochastic optimisation; Stochastic MPC; Sequential Monte Carlo; PARTICLE METHODS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes the use of Sequential Monte Carlo (SMC) as the computational engine for general (non-convex) stochastic Model Predictive Control (MPC) problems. It shows how SMC methods can be used to find global optimisers of non-convex problems, in particular for solving open-loop stochastic control problems that arise at the core of the usual receding-horizon implementation of MPC. This allows the MPC methodology to be extended to nonlinear non-Gaussian problems. We illustrate the effectiveness of the approach by means of numerical examples related to coordination of moving agents.
引用
收藏
页码:263 / +
页数:3
相关论文
共 50 条
  • [1] Clustering Method for Monte Carlo Model Predictive Control
    Toda, Tatsuya
    Nakatani, Shintaro
    Date, Hisashi
    [J]. IFAC PAPERSONLINE, 2021, 54 (14): : 251 - 256
  • [2] Monte Carlo logarithmic number system for model predictive control
    Vouzis, Panagiotis D.
    Arnold, Mark G.
    Collange, Sylvain
    Kothare, Mayuresh V.
    [J]. 2007 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 2007, : 453 - 458
  • [3] Sequential Monte Carlo with model tempering
    Mlikota, Marko
    Schorfheide, Frank
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2024, 28 (02): : 249 - 269
  • [4] Improving model predictive control arithmetic robustness by Monte Carlo simulations
    Vouzis, P. D.
    Collange, S.
    Arnold, M. G.
    Kothare, M. V.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (08): : 1064 - 1070
  • [5] Sampling variance update method in Monte Carlo Model Predictive Control
    Nakatani, Shintaro
    Date, Hisashi
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 1274 - 1281
  • [6] Stochastic Model Predictive Control for Microgrids Based on Monte Carlo Simulations
    Sezgin, Mustafa Erdem
    Pouraltafi-Kheljan, Soheil
    Beyarslan, Mehmet
    Gol, Murat
    [J]. 2022 57TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC 2022): BIG DATA AND SMART GRIDS, 2022,
  • [7] SEQUENTIAL MONTE CARLO
    HALTON, JH
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (JAN): : 57 - &
  • [8] Swing up Control of Inverted Pendulum on a Cart with Collision by Monte Carlo Model Predictive Control
    Nakatani, Shintaro
    Date, Hisashi
    [J]. 2019 58TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2019, : 1050 - 1055
  • [9] SEQUENTIAL MONTE CARLO METHODS UNDER MODEL UNCERTAINTY
    Urteaga, Inigo
    Bugallo, Monica F.
    Djuric, Petar M.
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [10] Model Predictive Control on Wall Wetting Effect Using Markov Chain Monte Carlo
    Ye, Zhengmao
    Mohamadian, Habib
    [J]. 2013 IEEE LATIN-AMERICA CONFERENCE ON COMMUNICATIONS (LATINCOM), 2013,