Sampling variance update method in Monte Carlo Model Predictive Control

被引:0
|
作者
Nakatani, Shintaro [1 ]
Date, Hisashi [2 ]
机构
[1] Univ Tsukuba, Grad Sch Syst & Informat Engn, Ibaraki, Japan
[2] Univ Tsukuba, Fac Engn Informat & Syst, Ibaraki, Japan
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Optimal control theory; Monte-Carlo methods; Randomized methods; Model predictive and optimization-based control;
D O I
10.1016/j.ifacol.2020.12.1855
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study describes the influence of user parameters on control performance in a Monte-Carlo model predictive control (MCMPC). MCMPC based on Monte-Carlo sampling depends significantly on the characteristics of sampling distribution. We quantified the effect of user determinable parameters on control performance uisng the relatonship between the algorithm of MCMPC and convergence to the optimal solution. In particular, we investigated the limitations associated with the variance of sampling distribution causing a trade-off relationship with the convergence speed and accuracy of estimation. To overcome this limitation, we proposed two variance updating methods and new MCMPC algorithm. Furthermore, the effectiveness of the numeriacl simulation was verified. Copyright (C) 2020 The Authors.
引用
收藏
页码:1274 / 1281
页数:8
相关论文
共 50 条
  • [1] Clustering Method for Monte Carlo Model Predictive Control
    Toda, Tatsuya
    Nakatani, Shintaro
    Date, Hisashi
    IFAC PAPERSONLINE, 2021, 54 (14): : 251 - 256
  • [2] Sequential Monte Carlo for Model Predictive Control
    Kantas, N.
    Maciejowski, J. M.
    Lecchini-Visintini, A.
    NONLINEAR MODEL PREDICTIVE CONTROL: TOWARDS NEW CHALLENGING APPLICATIONS, 2009, 384 : 263 - +
  • [3] Variance derivatives pricing and control variate Monte Carlo method
    Ma, Junmei
    Xu, Chenglong
    Zhou, Jing
    Tongji Daxue Xuebao/Journal of Tongji University, 2009, 37 (12): : 1700 - 1705
  • [4] Research on a Monte Carlo global variance reduction method based on an automatic importance sampling method
    Hao, Yi-Sheng
    Wu, Zhen
    Gao, Shen-Shen
    Qiu, Rui
    Zhang, Hui
    Li, Jun-Li
    NUCLEAR SCIENCE AND TECHNIQUES, 2024, 35 (05)
  • [5] Research on a Monte Carlo global variance reduction method based on an automatic importance sampling method
    YiSheng Hao
    Zhen Wu
    ShenShen Gao
    Rui Qiu
    Hui Zhang
    JunLi Li
    NuclearScienceandTechniques, 2024, 35 (05) : 180 - 195
  • [6] Catching Flying Ball with Drone Using Monte Carlo Model Predictive Control method
    Zhu, Liuyi
    Date, Hisashi
    IFAC PAPERSONLINE, 2024, 58 (18): : 329 - 334
  • [7] Modeling of Variance Swap and Improved Control Variate for Monte Carlo method
    Ma, Junmei
    Xu, Chenglong
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 735 - 739
  • [8] Monte Carlo logarithmic number system for model predictive control
    Vouzis, Panagiotis D.
    Arnold, Mark G.
    Collange, Sylvain
    Kothare, Mayuresh V.
    2007 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 2007, : 453 - 458
  • [9] Infinite variance in Monte Carlo sampling of lattice field theories
    Yunus, Cagin
    Detmold, William
    PHYSICAL REVIEW D, 2022, 106 (09)
  • [10] Monte Carlo Variance Reduction. Importance Sampling Techniques
    Florentin, Olariu St Emanuel
    11TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2009), 2009, : 137 - 141