Mechanisms of rDNA Copy Number Maintenance

被引:67
|
作者
Nelson, Jonathan O. [1 ,4 ]
Watase, George J. [1 ,4 ]
Warsinger-Pepe, Natalie [1 ,3 ]
Yamashita, Yukiko M. [1 ,2 ,4 ]
机构
[1] Univ Michigan, Life Sci Inst, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Cell & Dev Biol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Mol & Integrat Physiol, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Howard Hughes Med Inst, Ann Arbor, MI 48109 USA
关键词
RIBOSOMAL-RNA GENES; SISTER-CHROMATID EXCHANGE; SECONDARY STRUCTURE MAPS; NUCLEOLAR DOMINANCE; REPLICATION FORK; Y-CHROMOSOME; SACCHAROMYCES-CEREVISIAE; DROSOPHILA-MELANOGASTER; R2; RETROTRANSPOSITION; DNA METHYLATION;
D O I
10.1016/j.tig.2019.07.006
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
rDNA, the genes encoding the RNA components of ribosomes (rRNA), are highly repetitive in all eukaryotic genomes, containing 100s to 1000s of copies, to meet the demand for ribosome biogenesis. rDNA genes are arranged in large stretches of tandem repeats, forming loci that are highly susceptible to copy loss due to their repetitiveness and active transcription throughout the cell cycle. Despite this inherent instability, rDNA copy number is generally maintained within a particular range in each species, pointing to the presence of mechanisms that maintain rDNA copy number in a homeostatic range. In this review, we summarize the current understanding of these maintenance mechanisms and how they sustain rDNA copy number throughout populations.
引用
收藏
页码:734 / 742
页数:9
相关论文
共 50 条
  • [21] PLASMID STABILITY AND MAINTENANCE OF COPY NUMBER USING NATURAL MARKER
    Mohammed, Hamzah Basil
    Malla, Sudhakar
    JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES, 2015, 3 (04): : 368 - 377
  • [22] Copy number variants in neurexin genes: phenotypes and mechanisms
    Fuccillo, Marc, V
    Pak, ChangHui
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2021, 68 : 64 - 70
  • [23] Replication fork blocking deficiency leads to a reduction of rDNA copy number in budding yeast
    Murai, Taichi
    Yanagi, Shuichi
    Hori, Yutaro
    Kobayashi, Takehiko
    ISCIENCE, 2024, 27 (03)
  • [24] A feedback mechanism controls rDNA copy number evolution in yeast independently of natural selection
    Arnau, Vicente
    Barba-Aliaga, Marina
    Singh, Gaurav
    Ferri, Javier
    Garcia-Martinez, Jose
    Perez-Ortin, Jose E.
    PLOS ONE, 2022, 17 (09):
  • [25] Contrasting mechanisms of de novo copy number mutagenesis suggest the existence of different classes of environmental copy number mutagens
    Conover, Hailey N.
    Argueso, Juan Lucas
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2016, 57 (01) : 3 - 9
  • [26] Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number
    Tyynismaa, H
    Sembongi, H
    Bokori-Brown, M
    Granycome, C
    Ashley, N
    Poulton, J
    Jalanko, A
    Spelbrink, JN
    Holt, IJ
    Suomalainen, A
    HUMAN MOLECULAR GENETICS, 2004, 13 (24) : 3219 - 3227
  • [27] HETEROGENEITY AND MAINTENANCE OF CENTROMERE PLASMID COPY NUMBER IN SACCHAROMYCES-CEREVISIAE
    RESNICK, MA
    WESTMORELAND, J
    BLOOM, K
    CHROMOSOMA, 1990, 99 (04) : 281 - 288
  • [28] Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast
    Perez-Ortin, Jose E.
    Mena, Adriana
    Barba-Aliaga, Marina
    Singh, Abhyudai
    Chavez, Sebastian
    Garcia-Martinez, Jose
    PLOS GENETICS, 2021, 17 (04):
  • [29] Copepod development rates in relation to genome size and 18S rDNA copy number
    White, MM
    McLaren, IA
    GENOME, 2000, 43 (05) : 750 - 755
  • [30] Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants
    Rosato, Marcela
    Kovarik, Ales
    Garilleti, Ricardo
    Rossello, Josep A.
    PLOS ONE, 2016, 11 (09):