Doping dependence of thermopower in cuprate superconductors

被引:1
|
作者
Qin, Ling [1 ]
Liu, Yiqun [2 ]
Feng, Shiping [2 ]
机构
[1] Chengdu Normal Univ, Coll Phys & Engn, Chengdu 611130, Sichuan, Peoples R China
[2] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2021年 / 35卷 / 01期
基金
中国国家自然科学基金;
关键词
Thermopower; electron Fermi surface; cuprate superconductor; THERMOELECTRIC-POWER; PSEUDOGAP; BEHAVIOR;
D O I
10.1142/S0217984921500342
中图分类号
O59 [应用物理学];
学科分类号
摘要
The doping dependence of the thermopower of cuprate superconductors in the normal-state is studied within the t-j model. It is shown that with a proper modification of the bare electron dispersion in the t-j model, the experimental results of the doping dependence of the normal-state thermopower are qualitatively reproduced. In particular, the theory shows that a pseudogap-generated split of the van Hove peak in the density of states appears in the underdoped and optimally doped regimes, however, this split is absent from the overdoped regime. Concomitantly, the strong asymmetry of the spectral conductivity near the electron Fermi surface emerges, where the peak in the spectral conductivity appears always below the electron Fermi surface in the underdoped and optimally doped regimes, while it appears above the electron Fermi surface in the overdoped regime. This strong asymmetry of the spectral conductivity leads to the unusual behaviors of the normal-state thermopower from the underdoped regime to the overdoped regime.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Temperature dependence of junction voltage in bilayer cuprate superconductors
    Singh, MP
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE-PART A, 2003, 77A (04): : 365 - 369
  • [42] Temperature dependence of the supercurrent density in bilayer cuprate superconductors
    Singh, MP
    Ajay
    Gupta, BRK
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2003, 383 (04): : 388 - 394
  • [43] Evidence of doping-dependent pairing symmetry in cuprate superconductors
    Yeh, NC
    Chen, CT
    Hammerl, G
    Mannhart, J
    Schmehl, A
    Schneider, CW
    Schulz, RR
    Tajima, S
    Yoshida, K
    Garrigus, D
    Strasik, M
    PHYSICAL REVIEW LETTERS, 2001, 87 (08) : 870031 - 870034
  • [44] MECHANISM OF HOLE DOPING IN HG-BASED CUPRATE SUPERCONDUCTORS
    GUPTA, RP
    GUPTA, M
    PHYSICA C, 1994, 223 (3-4): : 213 - 218
  • [45] Doping dependence of thermopower and thermoelectricity in strongly correlated materials
    Mukerjee, Subroto
    Moore, Joel E.
    APPLIED PHYSICS LETTERS, 2007, 90 (11)
  • [46] Magnetic field dependence of superfluid density in cuprate superconductors
    Feng, Shiping
    Zhao, Huaisong
    Huang, Zheyu
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [47] Evolution with hole doping of the electronic excitation spectrum in the cuprate superconductors
    Wilson, John A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (38)
  • [48] Measurements of the doping effects on the in-plane paraconductivity in cuprate superconductors
    Vidal, F
    Ramallo, MV
    Ferro, G
    Veira, JA
    New Challenges in Superconductivity: Experimental Advances and Emerging Theories, 2005, 183 : 85 - 90
  • [49] Doping and charge-carrier density effects in the cuprate superconductors
    Tanner, DB
    Yoon, YD
    Zibold, A
    Liu, HL
    Quijada, MA
    Moore, SW
    Graybeal, JM
    O, BH
    Markert, JT
    Kelley, RJ
    Onellion, M
    Cho, JH
    SPECTROSCOPIC STUDIES OF SUPERCONDUCTORS, PTS A AND B: PT A - INFRARED AND RAMAN SPECTRA; PT B - TUNNELING, PHOTOELECTRON, AND OTHER SPECTRA, 1996, 2696 : 13 - 23
  • [50] Charge density waves in cuprate superconductors beyond the critical doping
    H. Miao
    G. Fabbris
    R. J. Koch
    D. G. Mazzone
    C. S. Nelson
    R. Acevedo-Esteves
    G. D. Gu
    Y. Li
    T. Yilimaz
    K. Kaznatcheev
    E. Vescovo
    M. Oda
    T. Kurosawa
    N. Momono
    T. Assefa
    I. K. Robinson
    E. S. Bozin
    J. M. Tranquada
    P. D. Johnson
    M. P. M. Dean
    npj Quantum Materials, 6