Thermal transport in composites of self-assembled nickel nanoparticles embedded in yttria stabilized zirconia

被引:3
|
作者
Shukla, Nitin C. [1 ]
Liao, Hao-Hsiang [1 ]
Abiade, Jeremiah T. [1 ,2 ]
Murayama, Mitsuhiro [3 ]
Kumar, Dhananjay [4 ,5 ,6 ]
Huxtable, Scott T. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA
[3] Virginia Polytech Inst & State Univ, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA
[4] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA
[5] N Carolina Agr & Tech State Univ, CAMSS, Greensboro, NC 27411 USA
[6] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
multilayers; nanoparticles; nickel; pulsed laser deposition; thermal conductivity; yttrium compounds; zirconium compounds; CONDUCTIVITY; NANOSCALE; DENSE;
D O I
10.1063/1.3116715
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the effect of nickel nanoparticle size on thermal transport in multilayer nanocomposites consisting of alternating layers of nickel nanoparticles and yttria stabilized zirconia (YSZ) spacer layers that are grown with pulsed laser deposition. Using time-domain thermoreflectance, we measure thermal conductivities of k=1.8, 2.4, 2.3, and 3.0 W m(-1) K-1 for nanocomposites with nickel nanoparticle diameters of 7, 21, 24, and 38 nm, respectively, and k=2.5 W m(-1) K-1 for a single 80 nm thick layer of YSZ. We use an effective medium theory to estimate the lower limits for interface thermal conductance G between the nickel nanoparticles and the YSZ matrix (G>170 MW m(-2) K-1), and nickel nanoparticle thermal conductivity.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Self-assembled nanostructure of Au nanoparticles on a self-assembled monolayer
    Wakamatsu, S
    Nakada, J
    Fujii, S
    Akiba, U
    Fujihira, M
    ULTRAMICROSCOPY, 2005, 105 (1-4) : 26 - 31
  • [32] Effect of anodic current density on the spreading of infiltrated nickel nanoparticles in nickel-yttria stabilized zirconia cermet anodes
    Gasper, Paul
    Lu, Yanchen
    Basu, Soumendra N.
    Gopalan, Srikanth
    Pal, Uday B.
    JOURNAL OF POWER SOURCES, 2019, 410 : 196 - 203
  • [33] Impedance spectroscopy analysis of percolation in (yttria-stabilized zirconia)-yttria ceramic composites
    Fonseca, FC
    Muccillo, R
    SOLID STATE IONICS, 2004, 166 (1-2) : 157 - 165
  • [34] Modeling of gas transport with electrochemical reaction in nickel-yttria-stabilized zirconia anode during thermal cycling by Lattice Boltzmann method
    Guo, Pengfei
    Guan, Yong
    Liu, Gang
    Liang, Zhiting
    Liu, Jianhong
    Zhang, Xiaobo
    Xiong, Ying
    Tian, Yangchao
    JOURNAL OF POWER SOURCES, 2016, 327 : 127 - 134
  • [35] Electrospray Flame Synthesis of Yttria-Stabilized Zirconia Nanoparticles
    Geier, Manfred
    Parker, Terry
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (47) : 16842 - 16850
  • [36] Grain-size-dependent thermal transport properties in nanocrystalline yttria-stabilized zirconia
    Yang, HS
    Eastman, JA
    Thompson, LJ
    Bai, GR
    NANOPHASE AND NANOCOMPOSITE MATERIALS IV, 2002, 703 : 179 - 184
  • [37] Thermal Transport in Self-Assembled Conductive Networks for Thermal Interface Materials
    Hu, Lin
    Evans, William
    Keblinski, Pawel
    JOURNAL OF ELECTRONIC PACKAGING, 2011, 133 (02)
  • [38] Transport of nanoparticles and proteins in self-assembled block copolymer hydrogels
    Walker, Lynn M.
    Cheng, Vicki A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [39] Thermal conductivity of dense and porous yttria-stabilized zirconia
    Schlichting, KW
    Padture, NP
    Klemens, PG
    JOURNAL OF MATERIALS SCIENCE, 2001, 36 (12) : 3003 - 3010
  • [40] Mechanical and thermal properties of porous yttria-stabilized zirconia
    Shimonosono, Taro
    Ueno, Takuya
    Hirata, Yoshihiro
    JOURNAL OF ASIAN CERAMIC SOCIETIES, 2019, 7 (01) : 20 - 30