Thermal transport in composites of self-assembled nickel nanoparticles embedded in yttria stabilized zirconia

被引:3
|
作者
Shukla, Nitin C. [1 ]
Liao, Hao-Hsiang [1 ]
Abiade, Jeremiah T. [1 ,2 ]
Murayama, Mitsuhiro [3 ]
Kumar, Dhananjay [4 ,5 ,6 ]
Huxtable, Scott T. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA
[3] Virginia Polytech Inst & State Univ, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA
[4] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA
[5] N Carolina Agr & Tech State Univ, CAMSS, Greensboro, NC 27411 USA
[6] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
multilayers; nanoparticles; nickel; pulsed laser deposition; thermal conductivity; yttrium compounds; zirconium compounds; CONDUCTIVITY; NANOSCALE; DENSE;
D O I
10.1063/1.3116715
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the effect of nickel nanoparticle size on thermal transport in multilayer nanocomposites consisting of alternating layers of nickel nanoparticles and yttria stabilized zirconia (YSZ) spacer layers that are grown with pulsed laser deposition. Using time-domain thermoreflectance, we measure thermal conductivities of k=1.8, 2.4, 2.3, and 3.0 W m(-1) K-1 for nanocomposites with nickel nanoparticle diameters of 7, 21, 24, and 38 nm, respectively, and k=2.5 W m(-1) K-1 for a single 80 nm thick layer of YSZ. We use an effective medium theory to estimate the lower limits for interface thermal conductance G between the nickel nanoparticles and the YSZ matrix (G>170 MW m(-2) K-1), and nickel nanoparticle thermal conductivity.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Self-Assembled Monolayer of Mixed Gold and Nickel Nanoparticles
    Jie, Yanni
    Fan, Huiqing
    You, Wei
    NANO-MICRO LETTERS, 2012, 4 (03) : 166 - 171
  • [22] Self-Assembled Monolayer of Mixed Gold and Nickel Nanoparticles
    Yanni Jie
    Huiqing Fan
    Wei You
    Nano-Micro Letters, 2012, 4 : 166 - 171
  • [23] Machine-able Yttria Stabilized Zirconia Composites for Thermal Insulation in Nuclear Reactors
    Lo, J.
    Zhang, R.
    Santos, R.
    JOM, 2016, 68 (02) : 463 - 468
  • [24] Machine-able Yttria Stabilized Zirconia Composites for Thermal Insulation in Nuclear Reactors
    J. Lo
    R. Zhang
    R. Santos
    JOM, 2016, 68 : 463 - 468
  • [25] Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents
    Hayashi, H
    Saitou, T
    Maruyama, N
    Inaba, H
    Kawamura, K
    Mori, M
    SOLID STATE IONICS, 2005, 176 (5-6) : 613 - 619
  • [26] Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres
    Leib, Elisabeth W.
    Vainio, Ulla
    Pasquarelli, Robert M.
    Kus, Jonas
    Czaschke, Christian
    Walter, Nils
    Janssen, Rolf
    Mueller, Martin
    Schreyer, Andreas
    Weller, Horst
    Vossmeyer, Tobias
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 448 : 582 - 592
  • [27] EFFECTS OF LASER PROCESSING ON NICKEL OXIDE - YTTRIA STABILIZED ZIRCONIA
    Kenneth, Tan Hong Yi
    Su Pei-Chen
    Sun Chen-Nan
    Wei Jun
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 367 - 373
  • [28] Mesoporous nickel yttria-zirconia composites.
    Mamak, M
    Ozin, GA
    Coombs, N
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U627 - U627
  • [29] Characterization of Nickel Ions in Nickel-Doped Yttria-Stabilized Zirconia
    Morrissey, Amy
    Tong, Jianhua
    Gorman, Brian P.
    Reimanis, Ivar E.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2014, 97 (04) : 1041 - 1047
  • [30] Self-Assembled Mesoporous Zirconia and Sulfated Zirconia Nanoparticles Synthesized. by Triblock Copolymer as Template
    Das, Swapan K.
    Bhunia, Manas K.
    Sinha, Anil K.
    Bhaumik, Asim
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20): : 8918 - 8923