Multiple kernel multivariate performance learning using cutting plane algorithm

被引:39
|
作者
Wang, Jingbin [1 ,2 ]
Wang, Haoxiang [3 ]
Zhou, Yihua [4 ]
McDonald, Nancy [5 ]
机构
[1] Chinese Acad Sci, Natl Time Serv Ctr, Xian 710600, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China
[3] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14850 USA
[4] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
[5] Tulane Univ, Dept Comp Sci, New Orleans, LA 70118 USA
关键词
Pattern recognition; multiple kernel; multivariate performance measures; cutting plane algorithm; FEATURE-SELECTION; SURFACE;
D O I
10.1109/SMC.2015.327
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a multi-kernel classifier learning algorithm to optimize a given nonlinear and nonsmoonth multivariate classifier performance measure. Moreover, to solve the problem of kernel function selection and kernel parameter tuning, we proposed to construct an optimal kernel by weighted linear combination of some candidate kernels. The learning of the classifier parameter and the kernel weight are unified in a single objective function considering to minimize the upper boundary of the given multivariate performance measure. The objective function is optimized with regard to classifier parameter and kernel weight alternately in an iterative algorithm by using cutting plane algorithm. The developed algorithm is evaluated on two different pattern classification methods with regard to various multivariate performance measure optimization problems. The experiment results show the proposed algorithm outperforms the competing methods.
引用
收藏
页码:1870 / 1875
页数:6
相关论文
共 50 条
  • [31] MODIFIED GOMORYS CUTTING PLANE ALGORITHM
    RYNDIN, BN
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA MATEMATIKA MEKHANIKA ASTRONOMIYA, 1977, (01): : 160 - 163
  • [32] Representation and Feature Selection using Multiple Kernel Learning
    Dileep, A. D.
    Sekhar, C. Chandra
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2218 - 2223
  • [33] Calpain Cleavage Prediction Using Multiple Kernel Learning
    duVerle, David A.
    Ono, Yasuko
    Sorimachi, Hiroyuki
    Mamitsuka, Hiroshi
    PLOS ONE, 2011, 6 (05):
  • [34] Learning from Multiple Graphs using a Sigmoid Kernel
    Ricatte, Thomas
    Garriga, Gemma
    Gilleron, Remi
    Tommasi, Marc
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 2, 2013, : 140 - 145
  • [35] Localized multiple kernel learning using graph modularity
    Chamakura, Lily
    Saha, Goutam
    PATTERN RECOGNITION LETTERS, 2022, 155 : 27 - 33
  • [36] Learning from multiple annotators using kernel alignment
    Gil-Gonzalez, J.
    Alvarez-Meza, A.
    Orozco-Gutierrez, A.
    PATTERN RECOGNITION LETTERS, 2018, 116 : 150 - 156
  • [37] A multiple kernel learning algorithm for drug-target interaction prediction
    André C. A. Nascimento
    Ricardo B. C. Prudêncio
    Ivan G. Costa
    BMC Bioinformatics, 17
  • [38] A multiple kernel learning algorithm for drug-target interaction prediction
    Nascimento, Andre C. A.
    Prudencio, Ricardo B. C.
    Costa, Ivan G.
    BMC BIOINFORMATICS, 2016, 17
  • [39] SVM incremental learning using Simulated Cutting Algorithm
    Shen, Feng-Shan
    Zhang, Jun-Ying
    Wang, Kai-Jun
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2010, 23 (04): : 491 - 500
  • [40] Target tracking algorithm based on extreme learning machine and multiple kernel boosting learning
    Zhang D.
    Sun R.
    Gao J.
    Sun, Rui (sunrui@hfut.edu.cn), 1600, Chinese Institute of Electronics (39): : 2149 - 2156