Learning from Multiple Graphs using a Sigmoid Kernel

被引:2
|
作者
Ricatte, Thomas
Garriga, Gemma [1 ]
Gilleron, Remi [1 ,2 ]
Tommasi, Marc [1 ,2 ]
机构
[1] INRIA Lille, Lille, France
[2] Univ Lille 3, F-59653 Villeneuve Dascq, France
关键词
D O I
10.1109/ICMLA.2013.119
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the problem of learning from a set of input graphs, each of them representing a different relation over the same set of nodes. Our goal is to merge those input graphs by embedding them into an Euclidean space related to the commute time distance in the original graphs. This is done with the help of a small number of labeled nodes. Our algorithm output a combined kernel that can be used for different graph learning tasks. We consider two combination methods: the (classical) linear combination and the sigmoid combination. We compare the combination methods on node classification tasks using different semi-supervised graph learning algorithms. We note that the sigmoid combination method exhibits very positive results.
引用
收藏
页码:140 / 145
页数:6
相关论文
共 50 条
  • [1] Learning from multiple annotators using kernel alignment
    Gil-Gonzalez, J.
    Alvarez-Meza, A.
    Orozco-Gutierrez, A.
    PATTERN RECOGNITION LETTERS, 2018, 116 : 150 - 156
  • [2] Multiple kernel learning using composite kernel functions
    Shiju, S. S.
    Salim, Asif
    Sumitra, S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 64 : 391 - 400
  • [3] Multitask Learning Using Regularized Multiple Kernel Learning
    Gonen, Mehmet
    Kandemir, Melih
    Kaski, Samuel
    NEURAL INFORMATION PROCESSING, PT II, 2011, 7063 : 500 - 509
  • [4] BRAIN TUMOR SEGMENTATION FROM MULTIPLE MRI SEQUENCES USING MULTIPLE KERNEL LEARNING
    Boughattas, Naouel
    Berar, Maxime
    Hamrouni, Kamel
    Ruan, Su
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1887 - 1891
  • [5] 3D shape retrieval and classification using multiple kernel learning on extended Reeb graphs
    Vincent Barra
    Silvia Biasotti
    The Visual Computer, 2014, 30 : 1247 - 1259
  • [6] 3D shape retrieval and classification using multiple kernel learning on extended Reeb graphs
    Barra, Vincent
    Biasotti, Silvia
    VISUAL COMPUTER, 2014, 30 (11): : 1247 - 1259
  • [7] Multiple kernel learning using nonlinear lasso
    Wang, Tinghua
    Tu, Xiaoqiang
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2019, 14 (05) : 760 - 767
  • [8] Multiple Kernel Learning Using Sparse Representation
    Klausner, Nick
    Azimi-Sadjadi, Mahmood R.
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 695 - 700
  • [9] Personalized Learning using Multiple Kernel Models
    Kuh, Anthony
    Huang, Shuai
    Chen, Cynthia
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 2085 - 2088
  • [10] Kernel Spectral Clustering for dynamic data using Multiple Kernel Learning
    Peluffo-Ordonez, D.
    Garcia-Vega, S.
    Langone, R.
    Suykens, J. A. K.
    Castellanos-Dominguez, G.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,