On the spectra of some combinations of two generalized quadratic matrices

被引:3
|
作者
Petik, Tugba [1 ]
Ozdemir, Halim [1 ]
Benitez, Julio [2 ]
机构
[1] Sakarya Univ, Dept Math, TR-54187 Sakarya, Turkey
[2] Univ Politecn Valencia, Dept Matemat Aplicada, Inst Matemat Multidisciplinar, Valencia 46022, Spain
关键词
Quadratic matrix; Generalized quadratic matrix; Idempotent matrix; Spectrum; Linear combination; Diagonalization; FACTORIZATION;
D O I
10.1016/j.amc.2015.06.093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A and B be two generalized quadratic matrices with respect to idempotent matrices P and Q, respectively, such that (A - alpha P)(A - beta P) = 0, AP = PA = A, 113 y (2)(B - gamma Q) (B - delta Q) = 0, BQ = QB - B PQ - QP, AB not equal BA, and (A + B)(alpha beta P - gamma delta Q) - (alpha beta P - gamma delta Q)(A + B) with alpha, beta, gamma, delta is an element of C. Let A + B be diagonalizable. The relations between the spectrum of the matrix A + B and the spectra of some matrices produced from A and B are considered. Moreover, some results on the spectrum of the matrix A + B are obtained when A B is not diagonalizable. Finally, some results and examples illustrating the applications of the results in the work are given. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:978 / 990
页数:13
相关论文
共 50 条
  • [1] The generalized quadraticity of linear combinations of two commuting quadratic matrices
    Uc, Mahmut
    Petik, Tugba
    Ozdemir, Halim
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (09): : 1696 - 1715
  • [2] ON THE SPECTRA OF SOME MATRICES DERIVED FROM TWO QUADRATIC MATRICES
    Ozdemir, H.
    Petik, T.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (02) : 225 - 238
  • [3] Generalized quadraticity of linear combination of two generalized quadratic matrices
    Petik, T.
    Uc, M.
    Ozdemir, H.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (12): : 2430 - 2439
  • [4] Invariance of Rank and Nullity for Linear Combinations of Sum and Product of Generalized Quadratic Matrices
    Liu, Shuyuan
    Chen, Meixiang
    Feng, Xiaoxia
    Yang, Zhongpeng
    Xie, Yanping
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12): : 157 - 166
  • [5] Invariance of rank and nullity for linear combinations of sum and product of generalized quadratic matrices
    Liu, Shuyuan
    Chen, Meixiang
    Feng, Xiaoxia
    Yang, Zhongpeng
    Xie, Yanping
    International Journal of Applied Mathematics and Statistics, 2013, 42 (12): : 157 - 166
  • [6] On generalized quadratic matrices
    Farebrother, RW
    Trenkler, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 410 : 244 - 253
  • [7] On the quadraticity of linear combinations of quadratic matrices
    Uc, M.
    Ozdemir, H.
    Ozban, A. Y.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (06): : 1125 - 1137
  • [8] RANK OF LINEAR AND QUADRATIC COMBINATIONS OF MATRICES
    Johnson, Ch R.
    Pena, J. M.
    Szulc, T.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 : 169 - 176
  • [9] Some Rank Equalities about Combinations of Two Idempotent Matrices
    ZUO Kezheng School of Mathematics and Statistics
    Wuhan University Journal of Natural Sciences, 2010, 15 (05) : 380 - 384
  • [10] On linear combinations of generalized involutive matrices
    Liu, Xiaoji
    Wu, Lingling
    Benitez, Julio
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (11): : 1221 - 1236