ON THE SPECTRA OF SOME MATRICES DERIVED FROM TWO QUADRATIC MATRICES

被引:0
|
作者
Ozdemir, H. [1 ]
Petik, T. [1 ]
机构
[1] Univ Sakarya, Dept Math, TR-54187 Sakarya, Turkey
关键词
Quadratic matrix; idempotent matrix; spectrum; linear combination; diagonalization; LINEAR-COMBINATIONS; PROJECTIONS; IDEMPOTENT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The relations between the spectrum of the matrix Q + R and the spectra of matrices (gamma + delta)Q + (alpha+ beta)R - QR - RQ,QR - RQ, alpha beta R - QRQ, alpha RQR - (QR)(2), and beta R - QR have been given assuming that the matrix Q + R is diagonalizable, where Q, R are {alpha, beta} -quadratic matrix and {gamma, delta}-quadratic matrix, respectively, of order n.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 50 条
  • [1] On the spectra of some combinations of two generalized quadratic matrices
    Petik, Tugba
    Ozdemir, Halim
    Benitez, Julio
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 978 - 990
  • [2] The product of two quadratic matrices
    Bünger, F
    Knüppel, F
    Nielsen, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 331 (1-3) : 31 - 41
  • [3] On the spectra of certain matrices and the iteration of quadratic maps
    Bandeira L.
    Ramos C.C.
    SeMA Journal, 2015, 67 (1) : 51 - 69
  • [4] SOME REMARKS ON THE SPECTRA OF HERMITIAN MATRICES
    KOVACSTRIKO, J
    VESELIC, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 145 : 221 - 229
  • [5] The sum of two quadratic matrices: Exceptional cases
    Pazzis, Clement de Seguins
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 653 : 357 - 394
  • [6] Some Results for the Drazin Inverses of the Sum of Two Matrices and Some Block Matrices
    Shakoor, Abdul
    Yang, Hu
    Ali, Ilyas
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [7] Decomposition of matrices into products of commutators of quadratic matrices
    Bien, M. H.
    Ramezan-Nassab, M.
    Truong, L. Q.
    LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [8] Sylvester-Kac matrices with quadratic spectra: A comprehensive note
    Du, Zhibin
    da Fonseca, Carlos M.
    RAMANUJAN JOURNAL, 2024, 65 (03): : 1313 - 1322
  • [9] GHWs of codes derived from the incidence matrices of some graphs
    Hamid Reza Maimani
    Maryam Mohammadpour Sabet
    Modjtaba Ghorbani
    Computational and Applied Mathematics, 2022, 41
  • [10] GHWs of codes derived from the incidence matrices of some graphs
    Maimani, Hamid Reza
    Sabet, Maryam Mohammadpour
    Ghorbani, Modjtaba
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):