On linear combinations of generalized involutive matrices

被引:7
|
作者
Liu, Xiaoji [2 ]
Wu, Lingling [2 ]
Benitez, Julio [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, Valencia 46022, Spain
[2] Guangxi Univ Nationalities, Coll Math & Comp Sci, Nanning 530006, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2011年 / 59卷 / 11期
关键词
generalized involutive matrices; CS decomposition; EP matrices; HYPERGENERALIZED PROJECTORS; CS DECOMPOSITION;
D O I
10.1080/03081087.2010.496111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X(dagger) denotes the Moore-Penrose pseudoinverse of a matrix X. We study a number of situations when (aA + bB)(dagger) = aA + bB provided a, b is an element of C\{0} and A, B are n x n complex matrices such that A(dagger) = A and B(dagger) = B.
引用
收藏
页码:1221 / 1236
页数:16
相关论文
共 50 条
  • [1] On linear combinations of two tripotent, idempotent, and involutive matrices
    Sarduvan, Murat
    Ozdemir, Halim
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (01) : 401 - 406
  • [2] On some linear combinations of commuting involutive and idempotent matrices
    Tosic, Marina
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 103 - 108
  • [3] Notes on linear combinations of two tripotent, idempotent, and involutive matrices that commute
    Ozdemir, Halim
    Sarduvan, Murat
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2008, 16 (02): : 83 - 89
  • [4] Inverting linear combinations of identity and generalized Catalan matrices
    Stanimirovic, Predrag
    Stanimirovic, Stefan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (07) : 1472 - 1480
  • [5] The generalized quadraticity of linear combinations of two commuting quadratic matrices
    Uc, Mahmut
    Petik, Tugba
    Ozdemir, Halim
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (09): : 1696 - 1715
  • [6] Invariance of Rank and Nullity for Linear Combinations of Sum and Product of Generalized Quadratic Matrices
    Liu, Shuyuan
    Chen, Meixiang
    Feng, Xiaoxia
    Yang, Zhongpeng
    Xie, Yanping
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12): : 157 - 166
  • [7] Invariance of rank and nullity for linear combinations of sum and product of generalized quadratic matrices
    Liu, Shuyuan
    Chen, Meixiang
    Feng, Xiaoxia
    Yang, Zhongpeng
    Xie, Yanping
    International Journal of Applied Mathematics and Statistics, 2013, 42 (12): : 157 - 166
  • [8] ORTHOGONAL MATRICES AS LINEAR COMBINATIONS OF PERMUTATION MATRICES
    KAPOOR, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (03) : 189 - 196
  • [9] On linear combinations of generalized projectors
    Baksalary, JK
    Baksalary, OM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 388 : 17 - 24
  • [10] On the quadraticity of linear combinations of quadratic matrices
    Uc, M.
    Ozdemir, H.
    Ozban, A. Y.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (06): : 1125 - 1137