Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility

被引:61
|
作者
Dai, Shibin [1 ]
Du, Qiang [2 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
SURFACE MOTION;
D O I
10.1007/s00205-015-0918-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the well-posedness of Cahn-Hilliard equations with degenerate phase-dependent diffusion mobility. We consider a popular form of the equations which has been used in phase field simulations of phase separation and microstructure evolution in binary systems. We define a notion of weak solutions for the nonlinear equation. The existence of such solutions is obtained by considering the limits of Cahn-Hilliard equations with non-degenerate mobilities.
引用
下载
收藏
页码:1161 / 1184
页数:24
相关论文
共 50 条
  • [31] From Vlasov Equation to Degenerate Nonlocal Cahn-Hilliard Equation
    Charles Elbar
    Marco Mason
    Benoît Perthame
    Jakub Skrzeczkowski
    Communications in Mathematical Physics, 2023, 401 : 1033 - 1057
  • [33] Regularity of solutions of the Cahn-Hilliard equation with non-constant mobility
    Liu, Chang Chun
    Qi, Yuan Wei
    Yin, Jing Xue
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1139 - 1150
  • [34] Regularity of Solutions of the Cahn-Hilliard Equation with Non-constant Mobility
    Chang Chun LIU Department of Mathematics
    Acta Mathematica Sinica,English Series, 2006, 22 (04) : 1139 - 1150
  • [35] From Vlasov Equation to Degenerate Nonlocal Cahn-Hilliard Equation
    Elbar, Charles
    Mason, Marco
    Perthame, Benoit
    Skrzeczkowski, Jakub
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (01) : 1033 - 1057
  • [36] GLOBAL WEAK SOLUTIONS TO A SIXTH ORDER CAHN-HILLIARD TYPE EQUATION
    Korzec, M. D.
    Nayar, P.
    Rybka, P.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3369 - 3387
  • [37] UPPER BOUNDS FOR COARSENING FOR THE DEGENERATE CAHN-HILLIARD EQUATION
    Novick-Cohen, Amy
    Shishkov, Andrey
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) : 251 - 272
  • [38] THE CAUCHY PROBLEM FOR THE DEGENERATE CONVECTIVE CAHN-HILLIARD EQUATION
    Liu, Aibo
    Liu, Changchun
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (08) : 2595 - 2623
  • [39] Degenerate Cahn-Hilliard equation: From nonlocal to local
    Elbar, Charles
    Skrzeczkowski, Jakub
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 364 : 576 - 611
  • [40] Nonlocal Cahn-Hilliard Equation with Degenerate Mobility: Incompressible Limit and Convergence to Stationary States
    Elbar, Charles
    Perthame, Benoit
    Poiatti, Andrea
    Skrzeczkowski, Jakub
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (03)