Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility

被引:61
|
作者
Dai, Shibin [1 ]
Du, Qiang [2 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
SURFACE MOTION;
D O I
10.1007/s00205-015-0918-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the well-posedness of Cahn-Hilliard equations with degenerate phase-dependent diffusion mobility. We consider a popular form of the equations which has been used in phase field simulations of phase separation and microstructure evolution in binary systems. We define a notion of weak solutions for the nonlinear equation. The existence of such solutions is obtained by considering the limits of Cahn-Hilliard equations with non-degenerate mobilities.
引用
下载
收藏
页码:1161 / 1184
页数:24
相关论文
共 50 条
  • [21] Solutions of the Cahn-Hilliard equation
    Ugurlu, Yavuz
    Kaya, Dogan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3038 - 3045
  • [22] CONVERGENCE OF A ONE-DIMENSIONAL CAHN-HILLIARD EQUATION WITH DEGENERATE MOBILITY
    Delgadino, Matias G.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 4457 - 4482
  • [23] A MOBILITY-SAV APPROACH FOR A CAHN-HILLIARD EQUATION WITH DEGENERATE MOBILITIES
    Bretin, Elie
    Calatroni, Luca
    Masnou, Simon
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (01): : 131 - 159
  • [24] SHARP-INTERFACE LIMITS OF THE CAHN-HILLIARD EQUATION WITH DEGENERATE MOBILITY
    Lee, Alpha Albert
    Munch, Andreas
    Suli, Endre
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (02) : 433 - 456
  • [25] WEAK SOLUTIONS FOR A MODIFIED DEGENERATE CAHN-HILLIARD MODEL FOR SURFACE DIFFUSION
    Niu, Xiaohua
    Xiang, Yang
    Yan, Xiaodong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (02) : 487 - 517
  • [26] Regularity of solutions of the Cahn-Hilliard equation with concentration dependent mobility
    Yin, JX
    Liu, CC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (05) : 543 - 554
  • [27] Stationary solutions for the Cahn-Hilliard equation
    Wei, JC
    Winter, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 459 - 492
  • [28] Convergence of solutions to Cahn-Hilliard equation
    Rybka, P
    Hoffmann, KH
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) : 1055 - 1077
  • [29] Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility
    Frigeri, Sergio
    Gal, Ciprian G.
    Grasselli, Maurizio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 : 295 - 328
  • [30] COARSENING MECHANISM FOR SYSTEMS GOVERNED BY THE CAHN-HILLIARD EQUATION WITH DEGENERATE DIFFUSION MOBILITY
    Dai, Shibin
    Du, Qiang
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1870 - 1889