Interfacial Engineering of Semiconductor-Superconductor Junctions for High Performance Micro-Coolers

被引:12
|
作者
Gunnarsson, D. [1 ]
Richardson-Bullock, J. S. [2 ]
Prest, M. J. [2 ]
H. Q. Nguyen [3 ]
Timofeev, A. V. [1 ]
Shah, V. A. [2 ]
Whall, T. E. [2 ]
Parker, E. H. C. [2 ]
Leadley, D. R. [2 ]
Myronov, M. [2 ]
Prunnila, M. [1 ]
机构
[1] VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] Aalto Univ Sch Sci, Low Temp Lab OVLL, FI-00076 Aalto, Finland
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
SCHOTTKY-BARRIER; DOPED SILICON; REFRIGERATION; THERMOMETRY;
D O I
10.1038/srep17398
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300 mK to below 100 mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Interfacial engineering in colloidal "giant" quantum dots for high-performance photovoltaics
    Selopal, Gurpreet S.
    Zhao, Haiguang
    Liu, Guiju
    Zhang, Hui
    Tong, Xin
    Wang, Kanghong
    Tang, Jie
    Sun, Xuhui
    Sun, Shuhui
    Vidal, Francois
    Wang, Yiqian
    Wang, Zhiming M.
    Rosei, Federico
    [J]. NANO ENERGY, 2019, 55 : 377 - 388
  • [32] Engineering Interfacial Silicon Dioxide for Improved Metal-Insulator-Semiconductor Silicon Photoanode Water Splitting Performance
    Satterthwaite, Peter F.
    Scheuermann, Andrew G.
    Hurley, Paul K.
    Chidsey, Christopher E. D.
    McIntyre, Paul C.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (20) : 13140 - 13149
  • [33] Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation
    Zhen Yu
    Yuqing Su
    Ruonan Gu
    Wei Wu
    Yangxi Li
    Shaoan Cheng
    [J]. Nano-Micro Letters, 2023, 15
  • [34] Micro–Nano Water Film Enabled High-Performance Interfacial Solar Evaporation
    Zhen Yu
    Yuqing Su
    Ruonan Gu
    Wei Wu
    Yangxi Li
    Shaoan Cheng
    [J]. Nano-Micro Letters, 2023, 15 (11) : 511 - 525
  • [35] Interfacial engineering for enhanced mechanical performance: High-entropy alloy/graphene nanocomposites
    Shi, Yeran
    Ye, Wenting
    Hua, Dongpeng
    Zhou, Qing
    Huang, Zhuobin
    Liu, Yuxin
    Li, Shuo
    Guo, Ting
    Chen, Yongnan
    Eder, Stefan J.
    Wang, Haifeng
    [J]. MATERIALS TODAY PHYSICS, 2023, 38
  • [36] Thermally Stable High-Performance Polymer Solar Cells Enabled by Interfacial Engineering
    Chen, Chao-Hsuan
    Lin, Zhi-Wei
    Huang, Kuan-Min
    Meng, Hsin-Fei
    Chen, Szu-Han
    Ge, Ziyi
    Zan, Hsiao-Wen
    Chang, Chih-Yu
    Chao, Yu-Chiang
    Horng, Sheng-Fu
    [J]. CHEMSUSCHEM, 2018, 11 (14) : 2429 - 2435
  • [37] High performance La-doped HZO based ferroelectric capacitors by interfacial engineering
    Popovici, M. I.
    Bizindavyi, J.
    Favia, P.
    Clima, S.
    Alam, Md. Nur K.
    Ramachandran, R. K.
    Walke, A. M.
    Celano, U.
    Leonhardt, A.
    Mukherjee, S.
    Richard, O.
    Illiberi, A.
    Givens, M.
    Delhougne, R.
    Van Houdt, J.
    Kar, G. Sankar
    [J]. 2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
  • [38] Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis
    Guo, Chunxian
    Zheng, Yao
    Ran, Jingrun
    Xie, Fangxi
    Jaroniec, Mietek
    Qiao, Shi-Zhang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (29) : 8539 - 8543
  • [39] Interfacial Engineering Promoting Electrosynthesis of Ammonia over Mo/Phosphotungstic Acid with High Performance
    Liao, Wanru
    Qi, Lu
    Wang, Yanlei
    Qin, Jingyu
    Liu, Guangyong
    Liang, Shijing
    He, Hongyan
    Jiang, Lilong
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (22)
  • [40] Interfacial-engineering-enabled high-performance Li-rich cathodes
    Ma, Quanxin
    Yang, Mengqian
    Meng, Junxia
    Zhou, Lingfei
    Xu, Lishuang
    Wang, Fangrui
    Sun, Tiankai
    Li, Ruihong
    Zhong, Shengwen
    Zhang, Qian
    Rao, Xianfa
    Liu, Tiefeng
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 485