Interfacial Engineering of Semiconductor-Superconductor Junctions for High Performance Micro-Coolers

被引:12
|
作者
Gunnarsson, D. [1 ]
Richardson-Bullock, J. S. [2 ]
Prest, M. J. [2 ]
H. Q. Nguyen [3 ]
Timofeev, A. V. [1 ]
Shah, V. A. [2 ]
Whall, T. E. [2 ]
Parker, E. H. C. [2 ]
Leadley, D. R. [2 ]
Myronov, M. [2 ]
Prunnila, M. [1 ]
机构
[1] VTT Tech Res Ctr Finland, FI-02044 Espoo, Finland
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] Aalto Univ Sch Sci, Low Temp Lab OVLL, FI-00076 Aalto, Finland
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
SCHOTTKY-BARRIER; DOPED SILICON; REFRIGERATION; THERMOMETRY;
D O I
10.1038/srep17398
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300 mK to below 100 mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] High Performance Nacre Fibers by Engineering Interfacial Entanglement
    Wang, Lidan
    Li, Kaiwen
    Chen, Feifan
    Guo, Rui
    Zhao, Yanyan
    Liu, Senping
    Zhang, Yiwei
    Li, Zeshen
    Shen, Chenwei
    Wang, Ziqiu
    Ming, Xin
    Liu, Yingjun
    Chen, Yan
    Liu, Yilun
    Gao, Chao
    Xu, Zhen
    [J]. NANO LETTERS, 2024, 24 (14) : 4256 - 4264
  • [22] Interfacial engineering for high performance inverted polymer solar cells
    Gong, Xiong
    Yi, Chao
    Hu, Xiaowen
    Ren, He
    Huang, Lin
    Lu, Xiaocun
    Huang, Fei
    Cao, Yong
    Newkome, George R.
    Cheng, Stephen Z. D.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [23] Interfacial engineering of hematite photoanodes toward high water splitting performance
    Thomaz, Kelly T. C.
    Bedin, Karen C.
    Rodriguez-Gutierrez, Ingrid
    Verissimo, Nathalia C.
    Bettini, Jefferson
    Souza, Flavio L.
    [J]. MATERIALS TODAY ENERGY, 2023, 37
  • [24] Interfacial Engineering Strategy for High-Performance Zn Metal Anodes
    Bin Li
    Xiaotan Zhang
    Tingting Wang
    Zhangxing He
    Bingan Lu
    Shuquan Liang
    Jiang Zhou
    [J]. Nano-Micro Letters, 2022, 14 (01) : 127 - 157
  • [25] Interfacial Engineering Strategy for High-Performance Zn Metal Anodes
    Bin Li
    Xiaotan Zhang
    Tingting Wang
    Zhangxing He
    Bingan Lu
    Shuquan Liang
    Jiang Zhou
    [J]. Nano-Micro Letters, 2022, 14
  • [26] Interfacial Engineering Strategy for High-Performance Zn Metal Anodes
    Li, Bin
    Zhang, Xiaotan
    Wang, Tingling
    He, Zhangxing
    Lu, Bingan
    Liang, Shuquan
    Zhou, Jiang
    [J]. NANO-MICRO LETTERS, 2022, 14 (01)
  • [27] Engineering interfacial adhesion for high-performance lithium metal anode
    Xu, Bingqing
    Liu, Zhe
    Li, Jiangxu
    Huang, Xin
    Qie, Boyu
    Gong, Tianyao
    Tan, Laiyuan
    Yang, Xiujia
    Paley, Daniel
    Dontigny, Martin
    Zaghib, Karim
    Liao, Xiangbiao
    Cheng, Qian
    Zhai, Haowei
    Chen, Xi
    Chen, Long-Qing
    Nan, Ce-Wen
    Lin, Yuan-Hua
    Yang, Yuan
    [J]. NANO ENERGY, 2020, 67
  • [28] Achieving Ferroelectricity in a Centrosymmetric High-Performance Semiconductor by Strain Engineering
    Wu, Mengqi
    Lou, Zhefeng
    Dai, Chen-Min
    Wang, Tao
    Wang, Jiaqi
    Zhu, Ziye
    Xu, Zhuokai
    Sun, Tulai
    Li, Wenbin
    Zheng, Xiaorui
    Lin, Xiao
    [J]. ADVANCED MATERIALS, 2023, 35 (22)
  • [29] Effect of GaAs interfacial layer on the performance of high bandgap tunnel junctions for multijunction solar cells
    Samberg, Joshua P.
    Carlin, C. Zachary
    Bradshaw, Geoff K.
    Colter, Peter C.
    Harmon, Jeffrey L.
    Allen, J. B.
    Hauser, John R.
    Bedair, S. M.
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (10)
  • [30] Interfacial engineering of reduced graphene oxide for high-performance supercapacitor materials
    Hao, Huilian
    Wang, Jianjun
    Lv, Qiu
    Jiao, Yiding
    Li, Jing
    Li, Wenyao
    Akpinar, Isil
    Shen, Wenzhong
    He, Guanjie
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 878