Constructing a confidence interval for the ratio of normal distribution quantiles

被引:2
|
作者
Malekzadeh, Ahad [2 ]
Mahmoudi, Seyed Mahdi [1 ]
机构
[1] Semnan Univ, Fac Math Stat & Comp Sci, POB 35195-363, Semnan, Iran
[2] KN Toosi Univ Technol, Fac Math, Dept Comp Sci & Stat, POB 16765-3381, Tehran, Iran
来源
MONTE CARLO METHODS AND APPLICATIONS | 2020年 / 26卷 / 04期
关键词
Normal distribution; coverage probability; quantiles; confidence interval; generalized pivotal quantity; shortest confidence interval; DIFFERENCE; EQUALITY; REGIONS; LIMITS;
D O I
10.1515/mcma-2020-2070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, to construct a confidence interval (general and shortest) for quantiles of normal distribution in one population, we present a pivotal quantity that has non-central t distribution. In the case of two independent normal populations, we propose a confidence interval for the ratio of quantiles based on the generalized pivotal quantity, and we introduce a simple method for extracting its percentiles, based on which a shorter confidence interval can be created. Also, we provide general and shorter confidence intervals using the method of variance estimate recovery. The performance of five proposed methods will be examined by using simulation and examples.
引用
收藏
页码:325 / 334
页数:10
相关论文
共 50 条
  • [1] The shortest confidence interval for the ratio of quantiles of the Dagum distribution
    Alina Jȩdrzejczak
    Dorota Pekasiewicz
    Wojciech Zieliński
    [J]. The Journal of Economic Inequality, 2023, 21 : 499 - 509
  • [2] The shortest confidence interval for the ratio of quantiles of the Dagum distribution
    Jedrzejczak, Alina
    Pekasiewicz, Dorota
    Zielinski, Wojciech
    [J]. JOURNAL OF ECONOMIC INEQUALITY, 2023, 21 (02): : 499 - 509
  • [3] Nonparametric Confidence Interval for Quantiles
    Ghalibaf, Mohammad Bolbolian
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (01) : 23 - 38
  • [4] Confidence interval for quantiles and percentiles
    Ialongo, Cristiano
    [J]. BIOCHEMIA MEDICA, 2019, 29 (01)
  • [5] Distribution-free Approximate Methods for Constructing Confidence Intervals for Quantiles
    Nagaraja, Chaitra H.
    Nagaraja, Haikady N.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2020, 88 (01) : 75 - 100
  • [6] CONFIDENCE INTERVAL FOR QUANTILE RATIO OF THE DAGUM DISTRIBUTION
    Jedrzejczak, Alina
    Pekasiewicz, Dorota
    Zielinski, Wojciech
    [J]. REVSTAT-STATISTICAL JOURNAL, 2021, 19 (01) : 87 - 97
  • [7] CONFIDENCE BANDS FOR QUANTILES OF A NORMAL POPULATION
    KABE, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (354) : 417 - 419
  • [8] A new confidence interval for the ratio of two normal means and comparisons
    Krishnamoorthy, K.
    Lv, Shanshan
    Chakraberty, Saptarshi
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (05) : 708 - 722
  • [9] Sample size needed to get given ratio of endpoints for confidence interval of standard deviation in a normal distribution
    Tarasinska, Joanna
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (23) : 11480 - 11484
  • [10] Confidence Interval, Prediction Interval and Tolerance Interval for the Skew Normal Distribution: A Pivotal Approach
    Qi, Xinlei
    Li, Huihui
    Tian, Weizhong
    Yang, Yaoting
    [J]. SYMMETRY-BASEL, 2022, 14 (05):