The shortest confidence interval for the ratio of quantiles of the Dagum distribution

被引:0
|
作者
Alina Jȩdrzejczak
Dorota Pekasiewicz
Wojciech Zieliński
机构
[1] University of Łódź,Department of Econometrics
[2] Warsaw University of Life Sciences,undefined
来源
关键词
Quantile ratio; Ratio of quintiles; The shortest confidence interval; Dagum distribution;
D O I
暂无
中图分类号
学科分类号
摘要
Jȩdrzejczak et al. (REVSTAT-Statistical Journal 19(1), 87–97, 2021) constructed a confidence interval for a ratio of quantiles coming from the Dagum distribution, which is frequently applied as a theoretical model in numerous income distribution analyses. The proposed interval is symmetric with respect to the ratio of sample quantiles, which result may be unsatisfactory in many practical applications. The search for a confidence interval with a smaller length resulted in the derivation of the shortest interval with the ends being asymmetric relative to the ratio of sample quantiles. In the paper, the existence of the shortest confidence interval is shown and the method of obtaining such an interval is presented. The results of the calculations show a reduction in the length of the proposed confidence interval by several percent compared to the symmetrical confidence interval.
引用
收藏
页码:499 / 509
页数:10
相关论文
共 50 条
  • [1] The shortest confidence interval for the ratio of quantiles of the Dagum distribution
    Jedrzejczak, Alina
    Pekasiewicz, Dorota
    Zielinski, Wojciech
    [J]. JOURNAL OF ECONOMIC INEQUALITY, 2023, 21 (02): : 499 - 509
  • [2] CONFIDENCE INTERVAL FOR QUANTILE RATIO OF THE DAGUM DISTRIBUTION
    Jedrzejczak, Alina
    Pekasiewicz, Dorota
    Zielinski, Wojciech
    [J]. REVSTAT-STATISTICAL JOURNAL, 2021, 19 (01) : 87 - 97
  • [3] Constructing a confidence interval for the ratio of normal distribution quantiles
    Malekzadeh, Ahad
    Mahmoudi, Seyed Mahdi
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (04): : 325 - 334
  • [4] Nonparametric Confidence Interval for Quantiles
    Ghalibaf, Mohammad Bolbolian
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (01) : 23 - 38
  • [5] Confidence interval for quantiles and percentiles
    Ialongo, Cristiano
    [J]. BIOCHEMIA MEDICA, 2019, 29 (01)
  • [6] The shortest confidence interval for Poisson mean
    Zielinski, Wojciech
    [J]. STATISTICAL PAPERS, 2022, 63 (06) : 2065 - 2072
  • [7] The shortest confidence interval for Poisson mean
    Wojciech Zieliński
    [J]. Statistical Papers, 2022, 63 : 2065 - 2072
  • [8] DISTRIBUTION OF THE RATIO OF TWO INDEPENDENT DAGUM RANDOM VARIABLES
    Pollastri, Angiola
    Zambruno, Giovanni
    [J]. OPERATIONS RESEARCH AND DECISIONS, 2010, 20 (3-4) : 95 - 102
  • [9] Estimation of confidence intervals of quantiles for the Weibull distribution
    J.-H. Heo
    J. D. Salas
    K.-D. Kim
    [J]. Stochastic Environmental Research and Risk Assessment, 2001, 15 : 284 - 309
  • [10] A CONFIDENCE INTERVAL FOR AVAILABILITY RATIO
    GRAY, HL
    LEWIS, TO
    [J]. TECHNOMETRICS, 1967, 9 (03) : 465 - &