Confidence Interval, Prediction Interval and Tolerance Interval for the Skew Normal Distribution: A Pivotal Approach

被引:4
|
作者
Qi, Xinlei [1 ]
Li, Huihui [2 ]
Tian, Weizhong [3 ]
Yang, Yaoting [4 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Cyberspace Secur, Xian 710121, Peoples R China
[2] Special Educ Sch Jinzhong City, Jinzhong 030600, Peoples R China
[3] Shenzhen Technol Univ, Coll Big Data & Internet, Shenzhen 518118, Peoples R China
[4] Xian Univ Technol, Dept Appl Math, Xian 710048, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 05期
关键词
fiducial distribution; confidence interval; prediction interval; tolerance interval; skew normal distribution; PARAMETER;
D O I
10.3390/sym14050855
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The class of skew normal distributions, introduced by Azzalini (1985), which is an asymmetric distribution and allows the presence of skewness. In this paper, we propose the pivotal quantity approach to construct the confidence interval for the mean, prediction interval for the mean of the future sample, and tolerance interval for the quantile. The fiducial distribution is also studied. Moreover, the performances of all the proposed confidence intervals are investigated through the Monte Carlo simulation. The pivotal quantity is a common method for calculating confidence intervals, which is used to construct confidence intervals in this paper. And the convergence of the obtained confidence interval is illustrated by the figures. Finally, a real data is used to explain proposed intervals in real life.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Confidence interval, prediction interval and tolerance limits for a two-parameter Rayleigh distribution
    Krishnamoorthy, K.
    Waguespack, Dustin
    Ngan Hoang-Nguyen-Thuy
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (01) : 160 - 175
  • [2] Tolerance interval for the mixture normal distribution
    Chen, Chian
    Wang, Hsiuying
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2020, 52 (02) : 145 - 154
  • [3] Constructing a confidence interval for the ratio of normal distribution quantiles
    Malekzadeh, Ahad
    Mahmoudi, Seyed Mahdi
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2020, 26 (04): : 325 - 334
  • [4] A tolerance interval for the normal distribution with several variance components
    Liao, CT
    Iyer, HK
    [J]. STATISTICA SINICA, 2004, 14 (01) : 217 - 229
  • [5] Sample size and confidence interval for the standard deviation of a normal distribution
    Liu, Xiaofeng
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2011, 14 (02): : 249 - 256
  • [6] Normal confidence interval for a summary measure
    Bernard, PM
    [J]. REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 2000, 48 (05): : 484 - 489
  • [7] On confidence interval estimation of normal percentiles
    Zili Zhang
    Saralees Nadarajah
    [J]. Japanese Journal of Statistics and Data Science, 2018, 1 (2) : 373 - 391
  • [8] Confidence interval estimation of a normal percentile
    Nadarajah, Saralees
    [J]. AMERICAN STATISTICIAN, 2008, 62 (02): : 186 - 187
  • [9] Confidence interval estimation of a normal percentile
    Chakraborti, S.
    Li, J.
    [J]. AMERICAN STATISTICIAN, 2007, 61 (04): : 331 - 336
  • [10] On confidence interval estimation of normal percentiles
    Zhang, Zili
    Nadarajah, Saralees
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2018, 1 (02) : 373 - 391