Ergodicity, transitivity, and regularity for linear cellular automata over Zm

被引:34
|
作者
Cattaneo, G
Formenti, E
Manzini, G
Margara, L
机构
[1] Univ Milan, Dipartimento Sci Informaz, I-20135 Milan, Italy
[2] Univ Turin, Dipart Sci & Tecnol Avanzante, Turin, Italy
[3] Univ Bologna, Dipartimento Sci Informaz, I-40127 Bologna, Italy
关键词
discrete time dynamical systems; cellular automata; ergodicity; topological transitivity;
D O I
10.1016/S0304-3975(98)00005-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the dynamical behavior of D-dimensional linear cellular automata over Z(m). We provide an easy-to-check necessary and sufficient condition for a D-dimensional linear cellular automata over Z(m) to be ergodic and topologically transitive. As a byproduct, we get that for linear cellular automata ergodicity is equivalent to topological transitivity. Finally, we prove that for 1-dimensional linear cellular automata over Z(m), regularity (denseness of periodic orbits) is equivalent to surjectivity. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 50 条
  • [21] On von Neumann regularity of cellular automata
    Ville Salo
    Natural Computing, 2023, 22 : 527 - 538
  • [22] On von Neumann regularity of cellular automata
    Salo, Ville
    NATURAL COMPUTING, 2023, 22 (03) : 527 - 538
  • [23] Ergodicity Versus Non-Ergodicity for Probabilistic Cellular Automata on Rooted Trees
    Kimura, Bruno
    Ruszel, Wioletta
    Spitoni, Cristian
    MARKOV PROCESSES AND RELATED FIELDS, 2019, 25 (02) : 189 - 215
  • [24] Ergodicity of Noisy Cellular Automata: The Coupling Method and Beyond
    Marcovici, Irene
    Pursuit of the Universal, 2016, 9709 : 153 - 163
  • [25] Ergodicity of some classes of cellular automata subject to noise
    Marcovici, Irene
    Sablik, Mathieu
    Taati, Siamak
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [26] Linear cellular automata and Fischer automata
    Carnegie Mellon Univ, Pittsburgh, United States
    Parallel Comput, 11 (1613-1634):
  • [27] On Linear Cellular Automata
    Kulikov, V. R.
    Kytmanov, A. A.
    Poroshin, A. O.
    Timofeev, I. V.
    Fedchenko, D. P.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (01) : 24 - 30
  • [28] Linear cellular automata and Fischer automata
    Sutner, K
    PARALLEL COMPUTING, 1997, 23 (11) : 1613 - 1634
  • [29] Optimal linear codes over Zm
    Dougherty, Steven T.
    Gulliver, T. Aaron
    Park, Young Ho
    Wong, John N. C.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (05) : 1139 - 1162
  • [30] CELLULAR AUTOMATA AND MULTIFRACTALS - DIMENSION SPECTRA OF LINEAR CELLULAR AUTOMATA
    TAKAHASHI, S
    PHYSICA D, 1990, 45 (1-3): : 36 - 48