Linear cellular automata and Fischer automata

被引:11
|
作者
Sutner, K [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
cellular automata; minimal automata; permutation automata;
D O I
10.1016/S0167-8191(97)00080-X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the sizes of minimal finite state machines associated with linear cellular automata. In particular, we construct a class of binary linear cellular automata whose corresponding minimal automata exhibit full exponential blow-up. These cellular automata have Hamming distance 1 to a permutation automaton. Moreover, the corresponding minimal Fischer automata as well as the minimal DFAs have maximal complexity. By contrast, the complexity of higher iterates of a cellular automaton always stays below the theoretical upper bound. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:1613 / 1634
页数:22
相关论文
共 50 条
  • [1] Linear cellular automata and Fischer automata
    Carnegie Mellon Univ, Pittsburgh, United States
    [J]. Parallel Comput, 11 (1613-1634):
  • [2] On Linear Cellular Automata
    Kulikov, V. R.
    Kytmanov, A. A.
    Poroshin, A. O.
    Timofeev, I. V.
    Fedchenko, D. P.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (01) : 24 - 30
  • [3] CELLULAR AUTOMATA AND MULTIFRACTALS - DIMENSION SPECTRA OF LINEAR CELLULAR AUTOMATA
    TAKAHASHI, S
    [J]. PHYSICA D, 1990, 45 (1-3): : 36 - 48
  • [4] Attractors of linear cellular automata
    Manzini, G
    Margara, L
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1999, 58 (03) : 597 - 610
  • [5] Reversibility of linear cellular automata
    Martin del Rey, A.
    Rodriguez Sanchez, G.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (21) : 8360 - 8366
  • [6] On the structure of linear cellular automata
    Popovici, A
    Popovici, D
    [J]. COMBINATORICS, COMPUTABILITY AND LOGIC, 2001, : 175 - 185
  • [7] CONSTRUCTION BY LINEAR CELLULAR AUTOMATA
    BLYUMIN, SL
    [J]. AUTOMATION AND REMOTE CONTROL, 1981, 42 (11) : 1538 - 1544
  • [8] Complexity and linear cellular automata
    Berthé, V
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 2000, 34 (05): : 403 - 423
  • [10] Linear cellular automata, finite automata and Pascal's triangle
    Allouche, JP
    vonHaeseler, F
    Peitgen, HO
    Skordev, G
    [J]. DISCRETE APPLIED MATHEMATICS, 1996, 66 (01) : 1 - 22