Traveling Quasi-periodic Water Waves with Constant Vorticity

被引:34
|
作者
Berti, M. [1 ]
Franzoi, L. [1 ]
Maspero, A. [1 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
关键词
SCHRODINGER-EQUATION; KAM THEOREM; EXISTENCE;
D O I
10.1007/s00205-021-01607-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the first bifurcation result of time quasi-periodic traveling wave solutions for space periodic water waves with vorticity. In particular, we prove the existence of small amplitude time quasi-periodic solutions of the gravity-capillary water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space-periodic free interface. These quasi-periodic solutions exist for all the values of depth, gravity and vorticity, and restrict the surface tension to a Borel set of asymptotically full Lebesgue measure.
引用
收藏
页码:99 / 202
页数:104
相关论文
共 50 条
  • [41] Quasi-periodic compressive waves in polar plumes
    DeForest, CE
    Gurman, JB
    CORONA AND SOLAR WIND NEAR MINIMUM ACTIVITY - FIFTH SOHO WORKSHOP, 1997, 404 : 775 - 778
  • [42] Spin waves in quasi-periodic magnetic superlattices
    Bezerra, CG
    Albuquerque, EL
    PHYSICA A, 1997, 245 (3-4): : 379 - 392
  • [43] SPIN-WAVES IN QUASI-PERIODIC SUPERLATTICES
    YUAN, J
    PANG, GD
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1990, 87 (1-2) : 157 - 162
  • [44] Magnetoplasma Waves in Semiconductor Periodic and Quasi-Periodic Layered Waveguides
    Olkhovskiy, Y. A.
    Shramkova, O. V.
    TERAHERTZ AND MID INFRARED RADIATION: BASIC RESEARCH AND PRACTICAL APPLICATIONS, WORKSHOP PROCEEDINGS, 2009, : 79 - +
  • [45] Magnetoplasma Waves in Semiconductor Periodic and Quasi-Periodic Layered Waveguides
    Olkhovskiy, Y. A.
    Shramkova, O. V.
    TERAHERTZ AND MID INFRARED RADIATION: GENERATION, DETECTION AND APPLICATIONS, 2011, : 147 - +
  • [46] Quasi-periodic waves and irregular solitary waves of the AB system
    Su, Jing-Jing
    Deng, Gao-Fu
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022, 32 (02) : 856 - 866
  • [47] Regularity of Traveling Free Surface Water Waves with Vorticity
    Hua Chen
    Wei-Xi Li
    Ling-Jun Wang
    Journal of Nonlinear Science, 2013, 23 : 1111 - 1142
  • [48] Regularity of Traveling Free Surface Water Waves with Vorticity
    Chen, Hua
    Li, Wei-Xi
    Wang, Ling-Jun
    JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (06) : 1111 - 1142
  • [49] A Hamiltonian Formulation of Water Waves with Constant Vorticity
    Erik Wahlén
    Letters in Mathematical Physics, 2007, 79 : 303 - 315
  • [50] A Hamiltonian formulation of water waves with constant vorticity
    Wahlen, Erik
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 79 (03) : 303 - 315