Traveling Quasi-periodic Water Waves with Constant Vorticity

被引:34
|
作者
Berti, M. [1 ]
Franzoi, L. [1 ]
Maspero, A. [1 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
关键词
SCHRODINGER-EQUATION; KAM THEOREM; EXISTENCE;
D O I
10.1007/s00205-021-01607-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the first bifurcation result of time quasi-periodic traveling wave solutions for space periodic water waves with vorticity. In particular, we prove the existence of small amplitude time quasi-periodic solutions of the gravity-capillary water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space-periodic free interface. These quasi-periodic solutions exist for all the values of depth, gravity and vorticity, and restrict the surface tension to a Borel set of asymptotically full Lebesgue measure.
引用
收藏
页码:99 / 202
页数:104
相关论文
共 50 条