Recurrence approach and higher rank cubic algebras for the N-dimensional superintegrable systems

被引:7
|
作者
Hoque, Md Fazlul [1 ]
Marquette, Ian [1 ]
Zhang, Yao-Zhong [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
superintegrable systems; polynomials algebras; ladder operators; orthogonal polynomials;
D O I
10.1088/1751-8113/49/12/125201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By applying the recurrence approach and coupling constant metamorphosis, we construct higher order integrals of motion for the Stackel equivalents of the N-dimensional superintegrable Kepler-Coulomb model with non-central terms and the double singular oscillators of type (n, N - n). We show how the integrals of motion generate higher rank cubic algebra C(3) circle plus L-1 circle plus L-2 with structure constants involving Casimir operators of the Lie algebras L-1 and L-2. The realizations of the cubic algebras in terms of deformed oscillators enable us to construct finite dimensional unitary representations and derive the degenerate energy spectra of the corresponding superintegrable systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
    Hoque, Md Fazlul
    Marquette, Ian
    Zhang, Yao-Zhong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
  • [2] Nondegenerate superintegrable systems in n-dimensional Euclidean spaces
    E. G. Kalnins
    J. M. Kress
    W. Miller
    G. S. Pogosyan
    [J]. Physics of Atomic Nuclei, 2007, 70 : 545 - 553
  • [3] Nondegenerate superintegrable systems in n-dimensional Euclidean spaces
    Kalnins, E. G.
    Kress, J. M.
    Miller, W.
    Pogosyan, G. S.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2007, 70 (03) : 545 - 553
  • [4] Family of N-dimensional superintegrable systems and quadratic algebra structures
    Hogue, Md Fazlul
    Marquette, Ian
    Zhang, Yao-Zhong
    [J]. XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670
  • [5] Superintegrable systems and higher rank factorizations
    Negro, J
    Calzada, JA
    del Olmo, MA
    [J]. ADVANCED SUMMER SCHOOL IN PHYSICS 2005: FRONTIERS IN CONTEMPORARY PHYSICS, 2006, 809 : 86 - +
  • [6] N-dimensional superintegrable systems from symplectic realizations of Lie coalgebras
    Ballesteros, Angel
    Blasco, Alfonso
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (30)
  • [7] Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature
    Ballesteros, Angel
    Herranz, Francisco J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) : F51 - F59
  • [8] Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces
    Ángel Ballesteros
    Alberto Enciso
    Francisco José Herranz
    Orlando Ragnisco
    [J]. Journal of Nonlinear Mathematical Physics, 2008, 15 : 43 - 52
  • [9] Superintegrable Anharmonic Oscillators on N-dimensional Curved Spaces
    Ballesteros, Angel
    Enciso, Alberto
    Jose Herranz, Francisco
    Ragnisco, Orlando
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 43 - 52
  • [10] Maximally superintegrable Smorodinsky-Winternitz systems on the N-dimensional sphere and hyperbolic spaces
    Herranz, FJ
    Ballesteros, A
    Santander, M
    Sanz-Gil, T
    [J]. SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 75 - 89