Multi-element logic gates for trapped-ion qubits

被引:125
|
作者
Tan, T. R. [1 ]
Gaebler, J. P. [1 ]
Lin, Y. [1 ]
Wan, Y. [1 ]
Bowler, R. [1 ]
Leibfried, D. [1 ]
Wineland, D. J. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
关键词
QUANTUM; STATE;
D O I
10.1038/nature16186
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precision control over hybrid physical systems at the quantum level is important for the realization of many quantum-based technologies. In the field of quantum information processing (QIP) and quantum networking, various proposals discuss the possibility of hybrid architectures(1) where specific tasks are delegated to the most suitable subsystem. For example, in quantum networks, it may be advantageous to transfer information from a subsystem that has good memory properties to another subsystem that is more efficient at transporting information between nodes in the network. For trapped ions, a hybrid system formed of different species introduces extra degrees of freedom that can be exploited to expand and refine the control of the system. Ions of different elements have previously been used in QIP experiments for sympathetic cooling(2), creation of entanglement through dissipation(3), and quantum non-demolition measurement of one species with another(4). Here we demonstrate an entangling quantum gate between ions of different elements which can serve as an important building block of QIP, quantum networking, precision spectroscopy, metrology, and quantum simulation. A geometric phase gate between a Be-9(+) ion and a Mg-25(+) ion is realized through an effective spin-spin interaction generated by state-dependent forces induced with laser beams(5-9). Combined with single-qubit gates and same-species entangling gates, this mixed-element entangling gate provides a complete set of gates over such a hybrid system for universal QIP(10-12). Using a sequence of such gates, we demonstrate a CNOT (controlled-NOT) gate and a SWAP gate(13). We further demonstrate the robustness of these gates against thermal excitation and show improved detection in quantum logic spectroscopy(14). We also observe a strong violation of a CHSH (Clauser-Horne-Shimony-Holt)-type Bell inequality(15) on entangled states composed of different ion species.
引用
下载
收藏
页码:380 / +
页数:5
相关论文
共 50 条
  • [31] High-fidelity transport of trapped-ion qubits in a multilayer array
    Palani, Deviprasath
    Hasse, Florian
    Kiefer, Philip
    Boeckling, Frederick
    Schroeder, Jan-Philipp
    Warring, Ulrich
    Schaetz, Tobias
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [32] Resource-Efficient Dissipative Entanglement of Two Trapped-Ion Qubits
    Cole, Daniel C.
    Erickson, Stephen D.
    Zarantonello, Giorgio
    Horn, Karl P.
    Hou, Pan-Yu
    Wu, Jenny J.
    Slichter, Daniel H.
    Reiter, Florentin
    Koch, Christiane P.
    Leibfried, Dietrich
    PHYSICAL REVIEW LETTERS, 2022, 128 (08)
  • [33] High-Fidelity Indirect Readout of Trapped-Ion Hyperfine Qubits
    Erickson, Stephen D.
    Wu, Jenny J.
    Hou, Pan-Yu
    Cole, Daniel C.
    Geller, Shawn
    Kwiatkowski, Alex
    Glancy, Scott
    Knill, Emanuel
    Slichter, Daniel H.
    Wilson, Andrew C.
    Leibfried, Dietrich
    PHYSICAL REVIEW LETTERS, 2022, 128 (16)
  • [34] Individual addressing of trapped ion qubits with geometric phase gates
    Sutherland, R. T.
    Srinivas, R.
    Allcock, D. T. C.
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [35] Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
    Nikodem Grzesiak
    Reinhold Blümel
    Kenneth Wright
    Kristin M. Beck
    Neal C. Pisenti
    Ming Li
    Vandiver Chaplin
    Jason M. Amini
    Shantanu Debnath
    Jwo-Sy Chen
    Yunseong Nam
    Nature Communications, 11
  • [36] Errors in trapped-ion quantum gates due to spontaneous photon scattering
    Ozeri, R.
    Itano, W. M.
    Blakestad, R. B.
    Britton, J.
    Chiaverini, J.
    Jost, J. D.
    Langer, C.
    Leibfried, D.
    Reichle, R.
    Seidelin, S.
    Wesenberg, J. H.
    Wineland, D. J.
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [37] Trapped-ion entangling gates robust against qubit frequency errors
    Lishman, Jake
    Mintert, Florian
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [38] Efficient arbitrary simultaneously entangling gates on a trapped-ion quantum computer
    Grzesiak, Nikodem
    Blumel, Reinhold
    Wright, Kenneth
    Beck, Kristin M.
    Pisenti, Neal C.
    Li, Ming
    Chaplin, Vandiver
    Amini, Jason M.
    Debnath, Shantanu
    Chen, Jwo-Sy
    Nam, Yunseong
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [39] Simple trapped-ion architecture for high-fidelity Toffoli gates
    Borrelli, Massimo
    Mazzola, Laura
    Paternostro, Mauro
    Maniscalco, Sabrina
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [40] Photon scattering errors during stimulated Raman transitions in trapped-ion qubits
    Moore, I. D.
    Campbell, W. C.
    Hudson, E. R.
    Boguslawski, M. J.
    Wineland, D. J.
    Allcock, D. T. C.
    PHYSICAL REVIEW A, 2023, 107 (03)