Multi-element logic gates for trapped-ion qubits

被引:125
|
作者
Tan, T. R. [1 ]
Gaebler, J. P. [1 ]
Lin, Y. [1 ]
Wan, Y. [1 ]
Bowler, R. [1 ]
Leibfried, D. [1 ]
Wineland, D. J. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
关键词
QUANTUM; STATE;
D O I
10.1038/nature16186
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precision control over hybrid physical systems at the quantum level is important for the realization of many quantum-based technologies. In the field of quantum information processing (QIP) and quantum networking, various proposals discuss the possibility of hybrid architectures(1) where specific tasks are delegated to the most suitable subsystem. For example, in quantum networks, it may be advantageous to transfer information from a subsystem that has good memory properties to another subsystem that is more efficient at transporting information between nodes in the network. For trapped ions, a hybrid system formed of different species introduces extra degrees of freedom that can be exploited to expand and refine the control of the system. Ions of different elements have previously been used in QIP experiments for sympathetic cooling(2), creation of entanglement through dissipation(3), and quantum non-demolition measurement of one species with another(4). Here we demonstrate an entangling quantum gate between ions of different elements which can serve as an important building block of QIP, quantum networking, precision spectroscopy, metrology, and quantum simulation. A geometric phase gate between a Be-9(+) ion and a Mg-25(+) ion is realized through an effective spin-spin interaction generated by state-dependent forces induced with laser beams(5-9). Combined with single-qubit gates and same-species entangling gates, this mixed-element entangling gate provides a complete set of gates over such a hybrid system for universal QIP(10-12). Using a sequence of such gates, we demonstrate a CNOT (controlled-NOT) gate and a SWAP gate(13). We further demonstrate the robustness of these gates against thermal excitation and show improved detection in quantum logic spectroscopy(14). We also observe a strong violation of a CHSH (Clauser-Horne-Shimony-Holt)-type Bell inequality(15) on entangled states composed of different ion species.
引用
下载
收藏
页码:380 / +
页数:5
相关论文
共 50 条
  • [21] Breaking the Entangling Gate Speed Limit for Trapped-Ion Qubits
    Saner, S.
    Bazavan, O.
    Minder, M.
    Drmota, P.
    Webb, D. J.
    Araneda, G.
    Srinivas, R.
    Lucas, D. M.
    Ballance, C. J.
    PHYSICAL REVIEW LETTERS, 2023, 131 (22)
  • [22] Coherent Control of Trapped-Ion Qubits with Localized Electric Fields
    Srinivas, R.
    Loschnauer, C. M.
    Malinowski, M.
    Hughes, A. C.
    Nourshargh, R.
    Negnevitsky, V
    Allcock, D. T. C.
    King, S. A.
    Matthiesen, C.
    Harty, T. P.
    Ballance, C. J.
    PHYSICAL REVIEW LETTERS, 2023, 131 (02)
  • [23] Entangling gates for trapped-ion quantum computation and quantum simulation
    Cai, Zhengyang
    Luan, Chun -Yang
    Ou, Lingfeng
    Tu, Hengchao
    Yin, Zihan
    Zhang, Jing -Ning
    Kim, Kihwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 82 (09) : 882 - 900
  • [24] Versatile laser-free trapped-ion entangling gates
    Sutherland, R. T.
    Srinivas, R.
    Burd, S. C.
    Leibfried, D.
    Wilson, A. C.
    Wineland, D. J.
    Allcock, D. T. C.
    Slichter, D. H.
    Libby, S. B.
    NEW JOURNAL OF PHYSICS, 2019, 21 (03):
  • [25] Effect of fast noise on the fidelity of trapped-ion quantum gates
    Nakav, Haim
    Finkelstein, Ran
    Peleg, Lee
    Akerman, Nitzan
    Ozeri, Roee
    PHYSICAL REVIEW A, 2023, 107 (04)
  • [26] Trapped-Ion Quantum Logic with Global Radiation Fields
    Weidt, S.
    Randall, J.
    Webster, S. C.
    Lake, K.
    Webb, A. E.
    Cohen, I.
    Navickas, T.
    Lekitsch, B.
    Retzker, A.
    Hensinger, W. K.
    PHYSICAL REVIEW LETTERS, 2016, 117 (22)
  • [27] Susceptibility of trapped-ion qubits to low-dose radiation sources
    Cui, Jiafeng
    Rasmusson, A. J.
    D'Onofrio, Marissa
    Xie, Yuanheng
    Wolanski, Evangeline
    Richerme, Philip
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2021, 54 (13)
  • [28] Polarization-insensitive state preparation for trapped-ion hyperfine qubits
    Leu, A.D.
    Smith, M.C.
    Gely, M.F.
    Lucas, D.M.
    Physical Review A, 110 (04):
  • [29] Quantum gate teleportation between separated qubits in a trapped-ion processor
    Wan, Yong
    Kienzler, Daniel
    Erickson, Stephen D.
    Mayer, Karl H.
    Tan, Ting Rei
    Wu, Jenny J.
    Vasconcelos, Hilma M.
    Glancy, Scott
    Knill, Emanuel
    Wineland, David J.
    Wilson, Andrew C.
    Leibfried, Dietrich
    SCIENCE, 2019, 364 (6443) : 875 - +
  • [30] Quantum gate in the decoherence-free subspace of trapped-ion qubits
    Ivanov, P. A.
    Poschinger, U. G.
    Singer, K.
    Schmidt-Kaler, F.
    EPL, 2010, 92 (03)