Adaptive k-means clustering algorithm for MR breast image segmentation

被引:88
|
作者
Moftah, Hossam M. [1 ,2 ]
Azar, Ahmad Taher [2 ,3 ]
Al-Shammari, Eiman Tamah [4 ]
Ghali, Neveen I. [2 ,5 ]
Hassanien, Aboul Ella [2 ,6 ]
Shoman, Mahmoud [6 ]
机构
[1] Beni Suef Univ, Fac Comp & Informat, Bani Suwayf, Egypt
[2] SRGE, Cairo, Egypt
[3] Benha Univ, Fac Comp & Informat, Banha, Egypt
[4] Kuwait Univ, Fac Comp Sci & Engn, Kuwait, Kuwait
[5] Al Azhar Univ, Fac Sci, Cairo, Egypt
[6] Cairo Univ, Fac Comp & Informat, Cairo, Egypt
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 24卷 / 7-8期
关键词
K-means clustering; Image segmentation; Magnetic resonance (MR) image; Breast cancer; Adaptive segmentation; SCREENING MAMMOGRAPHY; NEURAL-NETWORK;
D O I
10.1007/s00521-013-1437-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is vital for meaningful analysis and interpretation of the medical images. The most popular method for clustering is k-means clustering. This article presents a new approach intended to provide more reliable magnetic resonance (MR) breast image segmentation that is based on adaptation to identify target objects through an optimization methodology that maintains the optimum result during iterations. The proposed approach improves and enhances the effectiveness and efficiency of the traditional k-means clustering algorithm. The performance of the presented approach was evaluated using various tests and different MR breast images. The experimental results demonstrate that the overall accuracy provided by the proposed adaptive k-means approach is superior to the standard k-means clustering technique.
引用
收藏
页码:1917 / 1928
页数:12
相关论文
共 50 条
  • [31] Customer segmentation using K-means clustering and the adaptive particle swarm optimization algorithm
    Li, Yue
    Chu, Xiaoquan
    Tian, Dong
    Feng, Jianying
    Mu, Weisong
    [J]. APPLIED SOFT COMPUTING, 2021, 113
  • [32] Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm
    Tian, Kai
    Li, Jiuhao
    Zeng, Jiefeng
    Evans, Asenso
    Zhang, Lina
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 165
  • [33] Customer segmentation using K-means clustering and the adaptive particle swarm optimization algorithm
    Li, Yue
    Chu, Xiaoquan
    Tian, Dong
    Feng, Jianying
    Mu, Weisong
    [J]. Applied Soft Computing, 2021, 113
  • [34] Adaptive K-valued K-means clustering algorithm
    Wang Shenghui
    Li Hanbing
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1442 - 1445
  • [35] Image segmentation algorithm based on dynamic particle swarm optimization and K-means clustering
    Xiaoqiong, Wei
    Zhang, Yin E.
    [J]. International Journal of Computers and Applications, 2020, 42 (07) : 649 - 654
  • [36] Evaluation of modified adaptive k-means segmentation algorithm
    Taye Girma Debelee
    Friedhelm Schwenker
    Samuel Rahimeto
    Dereje Yohannes
    [J]. Computational Visual Media, 2019, 5 (04) : 347 - 361
  • [37] ADAPTIVE K-MEANS ALGORITHM FOR OVERLAPPED GRAPH CLUSTERING
    Bello-Orgaz, Gema
    Menendez, Hector D.
    Camacho, David
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2012, 22 (05)
  • [38] GPU-Based Parallel Implementation of k-means Clustering Algorithm for Image Segmentation
    Karbhari, Shruti
    Alawneh, Shadi
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2018, : 52 - +
  • [39] Evaluation of modified adaptive k-means segmentation algorithm
    Debelee, Taye Girma
    Schwenker, Friedhelm
    Rahimeto, Samuel
    Yohannes, Dereje
    [J]. COMPUTATIONAL VISUAL MEDIA, 2019, 5 (04) : 347 - 361
  • [40] Evaluation of modified adaptive k-means segmentation algorithm
    Taye Girma Debelee
    Friedhelm Schwenker
    Samuel Rahimeto
    Dereje Yohannes
    [J]. Computational Visual Media, 2019, 5 : 347 - 361